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Abstract

Transformer-based models have gained increasing attention in time series research,
driving interest in Large Language Models (LLMs) and foundation models for time
series analysis. As the field moves toward multi-modality, Large Vision Models
(LVMs) are emerging as a promising direction. In the past, the effectiveness of
Transformer and LLMs in time series has been debated. When it comes to LVMs, a
similar question arises: are LVMs truely useful for time series analysis? To address
it, we design and conduct the first principled study involving 4 LVMs, 8 imag-
ing methods, 18 datasets and 26 baselines across both high-level (classification)
and low-level (forecasting) tasks, with extensive ablation analysis. Our findings
indicate LVMs are indeed useful for time series classification but face challenges
in forecasting. Although effective, the contemporary best LVM forecasters are
limited to specific types of LVMs and imaging methods, exhibit a bias toward
forecasting periods, and have limited ability to utilize long look-back windows. We
hope our findings could serve as a cornerstone for future research on LVM- and
multimodal-based solutions to different time series tasks.

1 Introduction

Time series analysis is useful across various domains, including geoscience [1], neuroscience [4],
energy [24], healthcare [38], and smart city [37]. With the significant advances of sequence modeling
in the language domain, recent research attention on time series has been drawn to methods ranging
from Transformer [48] to Large Language Models (LLMs) [18, 60, 20]. As Large Vision Models
(LVMs), such as ViT [9], BEiT [3] and MAE [15], became successful, some emergent efforts have
been invested to explore the potential of LVMs in time series modeling [5]. In these works, time
series are imaged, i.e., transformed to certain image representations [40], as illustrated by Fig. 1(a),
then fed to an LVM to learn embeddings that can be probed for downstream tasks. These works posit
that LVMs, being pre-trained on vast images, are useful in time series analysis from two perspectives:
(1) for high-level (i.e., semantic level) tasks such as classification, imaged time series can encode
distinguishable temporal patterns as semantic cues that LVMs can recognize; (2) for low-level (i.e.,
numerical level) tasks such as forecasting, the intrinsic relationship between images and time series —
each row/column in an image (per channel) is a sequence of continuous pixel values that resembles a
univariate time series (UTS) — makes LVMs better suited to time series tasks than LL.Ms since LLMs
consume discrete tokens. However, in-depth connections between LVMs and time series analysis
remain largely underexplored.

In the past several years, the effectiveness of Transformer and LLMs for time series analysis was
critically questioned by [55] and [44] in tandem. When it comes to LVMs, a similar question arises
— are LVMs useful for time series analysis? To underlie future research upon LVMs, including
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multi-modal models that integrate imaged time series [61], a thorough feasibility study is needed to
understand LVMs’ role in time series tasks. This is precisely our goal. We comprehensively study
LVMs on two representative tasks, time series classification (TSC) and time series forecasting (TSF).
In a nutshell, our conclusion is cautiously positive: pre-trained LVMs are useful in TSC but pose
challenges when used for TSF. The current best LVM-based forecasters, although effective, are
limited to specific types of LVMs and imaging methods, exhibit bias towards forecasting periods, and
have limited ability to utilize long look-back window.

In this work, we choose two LVMs that are supervisedly pre-trained, i.e., ViT [9] and Swin [36], and
two LVMs that are self-supervisedly pre-trained, i.e., MAE [15] and SimMIM [53], along with 8
widely used methods for imaging time series as suggested in [40]. Our analysis involves 10 datasets
for TSC and 8 datasets for TSF, all are widely used benchmarks [2, 51, 64, 41, 55, 44]. In §3, we
introduce methods for adapting LVMs to time series tasks, including input alignment and task-specific
designs. Our analysis (§4) starts with thorough comparisons between LVMs and the state-of-the-art
(SOTA) baselines, including 18 classification baselines and 8 forecasting baselines. The results
provide an overview on the effectiveness of LVMs, shedding light on what type of LVMSs (supervised
vs. self-supervised), which imaging method (among 8 methods), and what output design (linear
probing vs. pre-trained decoder) fit which task (classification vs. forecasting).

To figure out the source of effectiveness, we compare LVMs’ zero-shot and (fully/partially) fine-tuned
performance with that of the same architecture trained from scratch, which shows the pre-trained
Transformer components indeed transfer useful knowledge. By testing LVMs under different shuffling
of time steps, we also find that LVMs grasp sequence modeling capability. As we observe TSF is
more challenging than TSC to LVMs, further TSF-specific study is conducted. From it, we reveal the
best LVM forecaster is a combination of self-supervised LVMs and a specific imaging method (i.e.,
UVH in Fig. 1(a)). Moreover, the pre-trained decoders in self-supervised LVMs play a more critical
role than their encoders in forecasting. However, the current best LVM forecasters have an inductive
bias that renders them basically “combine past periods” as forecasts, thus they are prone to datasets
with strong periodicity. To sum up, our contributions are as follows:

* To the best of our knowledge, this is the first work to comprehensively study the feasibility of
LVMs in time series analysis for both high-level and low-level predictive tasks.

* We compare representative LVMs using different imaging methods on datasets of various domains,
summarize the current best ways to tweak LVMs for TSC and TSF tasks, assess various aspects
of the adapted LVMs, including their effectiveness in terms of pre-training, imaging, decoding,
fine-tuning, architecture, temporal order of data, and computational costs, for the two tasks.

* We further investigate the challenge of using LVMs for forecasting by studying individual model
components, potential inductive bias, and the impact of look-back windows.

We hope our findings could provide an in-depth insight of LVMSs’ role in time series analysis, so as to
benefit future development in this emergent area and multi-modal time series research [17, 31].

2 Related Work

Our work share similar merits as [55, 44, 65], each of which sheds important lights on a single time
series task, i.e., Transformers for TSF [55], LLMs for TSF [44], and LLMs for time series anomaly
detection (TSAD) [65]. In contrast, our work is LVM-specific, covering more tasks with in-depth
analysis. This work could be considered as a substantial complement to the prior works by adding a
new lens to our understanding of large models’ roles in the contemporary time series domain.

Vision models have been used for a variety of time series tasks, including classification [29, 51],
forecasting [56, 54], anomaly detection [58, 51], and generation [28, 21]. Our work focuses on the
recent development of using pre-trained LVMs, particularly Transformer-based models, for time
series analysis. Image-pretrained CNNs have also been investigated in the past, such as pre-trained
ResNet for TSAD [39] and Inception-v1 for TSF [27], but are out of our scope due to their relatively
smaller sizes. To apply LVMs to time series, the existing works typically employ one of the 8 imaging
methods as summarized by [40], which we will introduce in §3 (Fig. 1(a)). For example, AST
[11] applies ImageNet-pretrained DeiT [45] on filterbank spectrograms of audio signals, which are
basically UTS, for TSC. ViTST [29] uses pre-trained Swin [36] for classifying lineplots of time series.
These works have inspired a series of efforts in pre-training ViT architectures with imaged time series
data, such as SSAST on AudioSet-2M [12], ViTime on synthetic data [54], and Brain-JEPA on brain



r(ijl)ilnilaiglinélilléthods (b) Classification ! (c) Forecasting:  (d) Forecasting: Encoder-Decoder
! ! ® Trainable !  Linear Head =

(i) Line Plot v) UVH ' ;
' (Class ) Freezing ! N2
' '

: 'Y ~""" | MAE: Transformer dec. |
¥ Linear Head ! % Linear Head LVM ''Si -l i
(vi) Filterbank__ | Lt Decoder | t SImMIM: Linear dec.
PO m (| Trensformert gy ™ imaging: () UvH 7}
Encoder VoLl J-eclkd |3 3 Encoder . =
\ o £
(vii) GAF | po----oi- Projection i E g
| [ O e ey :

:
~ ‘
Look-back window>°9me"S:

Imaging: (i) MVH

R
1

H Input Alignment \|

i : i
i i

- ' i
i iv) Wavelet vii) RP ' 1 (Imaging, norm, patching) | i 1 (Imaging, norm, patching) | | 8 >
i e S 4 HE L G e iy g AVAN o
‘ ‘ ! N aVaViE
: L INONONON L NONONON XN NG
' H ' i

,' Input Alignment

'
| e

Figure 1: An overview of (a) different imaging methods, (b) LVM-based time series classification,
(c) LVM with linear head for forecasting, (d) LVM encoder-decoder for forecasting. In (a), MVH
encodes MTS, others encode UTS. (b)(c) apply to all LVMs (ViT, Swin, MAE, SimMIM) in this study.
(d) applies to MAE and SimMIM with UVH/MVH images. Table 1 summarizes their applicability.

time series [8]. In contrast to TSC, TSF task has less efforts in using LVMs, possibly because LVMs
are less adept at low-level tasks than high-level tasks. The most salient method is VisionTS [5], which
adapts a self-supervisedly pre-trained LVM i.e., MAE [15], to zero-shot and few-shot TSF. In our
work, in addition to MAE, we include another self-supervised LVM — SimMIM [53].

More recently, large vision-language models (VLMs), such as LLaVA [32], CLIP [43], ViLT [22],
etc., which involve pre-trained large vision encoders, have been explored for TSC [49, 42], TSAD
[66], and TSF [61]. However, the effectiveness of sole LVMs in time series analysis has not yet been
well understood. As such, we focus on LVMs in this work, and leave VLMs for future work. We
refer readers to [40] for a detailed discussion about the existing literature on LVMs for time series.

3 Methods for Using LVMs in Time Series Analysis

Following existing LVM-based solutions [5], we assess LVMs’ innate ability in time series analysis by
keeping the main architecture intact but making a few necessary tweaks, including (i) input alignment;
and (ii) task-specific augmentation. Additionally, we introduce two ablations that will be used in §4
to evaluate whether LVMs’ architecture is over-complex.

Input Alignment. The input to a pre-trained LVM should be a normalized 3-channel image of a
predefined size. Fitting time series to LVMs’ input requires (1) imaging time series; (2) resizing the
imaged time series to fit the channel/size requirement; and (3) normalizing the image.

For (1), we employ 8 imaging methods suggested by [40]. As illustrated in Fig. 1(a), They include
Line Plot, multivariate heatmap (MVH), univariate heatmap (UVH), Short-Time Fourier Transform
(STFT), Wavelet Transform, Filterbank, Gramian Angular Field (GAF), and Recurrence Plot (RP).
Line Plot is a straightforward method that draws a 2D image with z-axis representing time steps and
y-axis representing time-wise values. MVH visualizes the matrix of a multivariate time series (MTS),
X € R¥T with z-axis representing 7' time steps and y-axis representing d variates. UVH is a
method proposed by TimesNet [51] and used by other methods [5, 30]. It divides a UTS, x € RT, into
| T/ L] segments of length L, where L is a period obtained using Fast Fourier Transform (FFT) on x.
The segments are then stacked to a 2D image of size L x |T//L|. STFT, Wavelet and Filterbank
are three methods for transforming x to a spectrogram with z-axis representing time and y-axis
representing frequency. GAF and RP produce square matrices with both z- and y-axis representing
time, but they encode different temporal patterns. Among the 8 methods, MVH encodes MTS, while
others encode UTS, leading to different ways to model multiple variates as stated in ‘“Task-Specific
Augmentation”. We refer readers to [40] for more details about the 8 imaging methods.

For (2), i.e., image resizing, following [11, 5], we first resize an imaged time series to fit the size
defined by LVMSs’ pre-training data using bilinear interpolation. Then, we align the resized images to
meet the 3-channel requirement by duplicating each resized image (per variate) three times to form
a gray image. For (3), i.e., image normalization, since the adopted LVMs, i.e., ViT, Swin, MAE,
SimMIM, standardize each pre-training image, we normalize each imaged time series in the same
manner for consistency: Iom = [I — mean(I)]/standard-deviation(I), where I is the input image



and I,omy is the normalized one. As shown in Fig. 1(b)-(d), the normalized image is then divided into
a number of patches as specified by each LVM before feeding to the LVM.

Task-Specific Augmentation. For TSC task, as shown in Fig. 1(b), we linearly probe each LVM’s
encoder. For ViT and Swin, this implies replacing their classification layers by a new linear layer
tailored to a specific downstream TSC task. For MAE and SimMIM, this means their reconstruction
decoders are replaced by a linear classification layer. As most imaging methods encode UTS (except
for MVH), the image of each variate is fed to the LVM individually. The output patch embeddings
of all variates are concatenated before delivering to the last linear layer. For MVH, there is a single
image of all variates, thus it does not need variate-concatenation.

For TSF task, we employ two frameworks
from the literature. Fig. 1(c) trains a linear

forecaster [56, 54], Fig. 1(d) uses LVMs’ recon- Eell;]s(si fication K?lagmg X;)T (Sl:;] mn ?S)A E (SG;HMIM
struction decoders for forecasting [5]. Because Forccasting UVELMVH () (©) (@) (@)
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decoders, Fig. 1(d) is applied to them. Fig. 1(c)
applies to ViT and Swin. For both frameworks, Taple 1: LVM framework summary. (b)(c)(d) indi-
we adopt the “variate-independence™ assump-  cates the frameworks in Fig. 1.

tion that is widely used in TSF [41], i.e., each

variate is forecasted independently. This applies to all imaging methods except for MVH, by which
all variates appear in the same image thus are forecasted once. Additionally, the framework in Fig.
1(d) adds a mask subsequent to the look-back window part in the image, then it reconstructs the
masked patches and recovers forecasts. This requires input images to preserve raw time series values
in pixels. Among the 8 imaging methods, only MVH and UVH preserve time series values. Thus,
this framework is only applied to MVH and UVH. The framework in Fig. 1(c) can be applied to all
imaging types. Table | summarizes how frameworks (b)(c)(d) in Fig. 1 apply to different LVMs.

Ablations. To assess whether LVM architecture is over-complex, we add two ablation models. Both
models keep the projection layer in LVM encoder, but replace the Transformer by a simpler layer. The
first ablation uses a linear layer, named as W/0-LVM. The second ablation uses a single randomly
initialized multi-head attention layer, named as LVM2ATTN. Both ablations use a linear head to
avoid complex decoders. They are applicable to all 8 imaging types and both of the two tasks. An
illustration of the ablation models can be found in Appendix B.6.

4 Experiments

4.1 Experimental Setup

Datasets. Our experiments are conducted on widely used benchmarks. For TSC, following [51, 64],
we use 10 datasets from UEA Archive [2], covering gesture/action/audio recognition, heartbeat-based
diagnosis, and other real-world tasks. The datasets are preprocessed following [57]. For TSF, we use
8 datasets including ETT (Electricity Transformer Temperature) [62], encompassing ETTh1, ETTh2,
ETTml, ETTm2, Weather [52], Illiness [52], Traffic [52], and Electricity [46]. For both tasks, all of
the time series are MTS. We defer detailed data descriptions to Appendix A.1.

Evaluation Metrics. For TSC, following [51, 64], we report classification accuracy of the compared
methods. For TSF, following [41, 55, 44], mean squared error (MSE) and mean absolute error (MAE)
are used to evaluate performance. Definitions of the metrics are deferred to Appendix A.3.

Models. We include two supervised LVMs: (1) ViT [9], (2) Swin [36], and two self-supervised LVMs:
(3) MAE [15], (4) SimMIM [53]. They are implemented as per Table 1 for different tasks. Following
[51, 64], we include 18 classification baselines ranging from XGBoost to LLMs. Following [44, 5], 8
SOTA forecasting baselines are compared. The baseline methods are presented in Fig. 2 and Table
2, and described in Appendix A.2. The implementation details of the LVMs, including checkpoint
selection, hyperparameters, and running environments are in Appendix A.4.

4.2 Results of Comparing LVMs with Non-LVM Methods

Fig. 2 and Table 2 present the overall performance of the compared methods. In the comparisons,
ViT and MAE are selected to represent LVMs for their best performance in their respective group:
supervised LVM group and self-supervised LVM group. In §4.3, we will compare ViT, Swin, MAE



Method | MAE | ViT  |Time-LLM| GPT4TS | CALF | Dlinear | PatchTST | TimesNet | FEDformer|Autoformer
Metrics |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

ETTh1 ]0.409 0.419]0.445 0.449|0.418 0.432]0.418 0.421]0.432 0.431|0.423 0.437|0.413 0.431]0.458 0.450|0.440 0.460(0.496 0.487
ETTh2 ]0.357 0.390{0.389 0.4110.361 0.396|0.354 0.389(0.351 0.384|0.431 0.447|0.330 0.379]0.414 0.427]0.437 0.449|0.450 0.459
ETTml1 [0.345 0.374]0.409 0.422{0.356 0.377(0.363 0.378|0.396 0.391/0.357 0.379{0.351 0.381{0.400 0.406|0.448 0.452(0.588 0.517
ETTm2 |0.268 0.327]0.300 0.337]0.261 0.316]0.254 0.3110.283 0.323]0.267 0.334]0.255 0.315]0.291 0.333]0.305 0.349/0.327 0.371
Weather [0.225 0.258]0.234 0.273]0.244 0.270(0.227 0.255]0.251 0.274{0.249 0.300(0.226 0.264]0.259 0.287(0.309 0.360(0.338 0.382
Illness |1.837 0.883(2.179 1.016|2.018 0.894|1.871 0.852{1.700 0.869|2.169 1.041|1.443 0.798|2.139 0.931|2.847 1.144|3.006 1.161
Traffic |0.386 0.256]0.430 0.343]0.422 0.2810.421 0.274]0.444 0.284(0.434 0.295|0.391 0.264]0.620 0.336(0.610 0.376|0.628 0.379

Electricity [0.159 0.250(0.173 0.266|0.165 0.259{0.170 0.263(0.176 0.266|0.166 0.264|0.162 0.253|0.193 0.295|0.214 0.327{0.227 0.338
# Wins 9 0 0 3 0 0 4 0 0 0

Table 2: Model comparison in TSF. The results are averaged over different prediction lengths. See
Table 11 in Appendix B.2 for full results. Red and Blue numbers are the the best and second best
results. # Wins is the number of times the method performed best.

and SimMIM. Here, ViT and MAE are set up with their best imaging methods — GAF for TSC and
UVH for TSE. Comparisons of different imaging methods are also discussed in §4.3. On average,
LVMs were fine-tuned on each dataset with 20 epochs for TSC and 8 epochs for TSF upon early
stopping. Our experiments follow standard protocols of TSC [64] and TSF [44]. In Fig. 2, we
collected the results of the 18 baselines reproduced by [64]. In Table 2, the results of LLM based
methods (i.e., Time-LLM, GPT4TS, CALF) are reproduced by [44], the rest baseline results are
reproduced by [5]. The full results can be found in Appendices B.1 and B.2.

From Fig. 2, both Vi_T and MAE outperform the B VM-Based BEEE LLM-Based
baselines, which provides an overview of both su- BN CNN-Based WM Transformer-Based
pervised and self-supervised LVMs’ potential in 7o M RNN-Based Classical Methods

high-level (i.e., semantic level) TSC task. This is
consistent with their ability in classifying regular
images [15]. From Table 2, across 8 datasets and
2 metrics, MAE outperforms non-LVM baselines
in 9/16 cases, while ViT doesn’t show evident su-
periority over non-LVM baselines, which may be
caused by its classification-based pre-training. The
results suggest LVMs’ distinct abilities in TSF, con-
veying that more challenges may appear in low-level
(i.e., numerical level) tasks. Taking a closer look at
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that although ViT is pre-trained for image classifi- Figure 2: Model comparison in TSC. The re-
cation, linearly probing it is adequate to produce sults are averaged over 10 UEA datasets. See

reasonable forecasting results, showing a potential Table 9 in Appendix B.1 for full results.
in cross-task/modality knowledge transfer.

4.3 In-Depth Analysis of LVMs’ Suitability in Time Series Tasks

Next, we dissect LVMs’ performance by answering a series of research questions. The following
analyses use 4 UEA classification datasets (FaceDetection, Handwriting, SpokenArabicDigits, and
UWaveGestureLibrary) and 4 forecasting datasets (ETThl, ETTm1, Weather, and Illiness) for
conciseness. Unless otherwise noted, the best-performing LVM is used for TSC, i.e., ViT with GAF
imaging (ref. Fig. 2), and TSF, i.e., MAE with UVH imaging (ref. Table 2), respectively.

[RQ1] What type of LVM best fits TSC (TSF) task? Fig. 3 compares the 4 LVMs in TSC and TSF
tasks. From Fig. 3, we observe (1) supervised LVMs and self-supervised LVMs show comparable
accuracies in classification, while (2) self-supervised LVMs are remarkably better at forecasting than
supervised LVMs. (1) is consistent with the comparable performance of the two kinds of LVMs
in classifying images [15]. (2) attributes to the continuous nature of pixels and time series, which
enables self-supervised LVMs to transfer their ability in reconstructing masked pixels to predict
(masked) time series, as proposed by [5]. Moreover, in Fig. 3(a), we observe SimMIM and Swin
underperform (SimMIM uses Swin backbone). This is because they use window-based local attention
mechanism. Compared to the global attention used by MAE and ViT, local attention implicitly
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Figure 3: Comparison of 4 LVMs on TSC (accuracy) and TSF (MSE). 1 (|) indicates a higher (lower)
value is better. Two taxonomies of the LVMs: (1) supervised (ViT, Swin) vs. self-supervised (MAE,
SimMIM), (2) using global attention (ViT, MAE) vs. window-based attention (Swin, SImMIM).

Task TSC Task (accuracy (%)) TSF Task (MSE )
Dataset UWave. Spoken. Handwrit. FaceDetect.[ETTh1 ETTm1 Illiness Weather
(a) All parameters 88.4 98.5 36.4 674 0.558 0.399 1.781 0.273
(b) All but CLS & Mask| 87.5 98.2 35.2 66.3 0.530 0.408 1.783 0.275
S (c) MLP & norm 88.7 98.4 35.5 67.1 0.532 0396 1.737 0.264
& |(d) Norm 81.6 98.0 28.5 65.2 0.409 0.345 1.837 0.225
(e) Zero-shot 84.0 98.5 27.8 66.7 0.452 0420 2.037 0.308
(f) Train from scratch 73.4 97.0 24.3 65.0 0475 0.372 1.723 0.241
5 w/0-LVM 78.6 96.4 22.4 64.1 0.423 0.376 2291 0.255
& |LVM2ATTN 80.1 96.5 20.7 66.2 0.428 0.357 2.108 0.254

Table 3: Ablation analysis of LVMs. For classification, higher accuracy indicates better performance.
For forecasting, lower MSE is preferred. Full results are in Appendices B.5 and B.6.

assumes translation invariance — a model’s ability to recognize an object in an image regardless of
where the object appears [26]. This assumption, however, does not hold in imaged time series since
different locations in an imaged time series correspond to different time-steps/frequencies, which are
ordered. A pattern that appears at different time steps may lead to different classes. By overlooking
spatial differences, SimMIM and Swin fail to identify some time/frequency-sensitive patterns.

[RQ2] Which imaging method best fits TSC (TSF) task?

Fig. 4 presents' the critical dif- (a) Tlme Series Classmcatlon (b) Time Series Forecasting
ference (CD) diagrams [14] on 20348 12345 6 7

. | Lo fls -l-lnlAngank [ .|.|.|.|.‘|.|Avg_Rank
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Be. fl ;r Or Ie;s l;i;.arj(;r)l, gginﬁltz Figure 4: Average rank of different imaging methods in (a) TSC

the classification best, with close task, and (b) TSF task. Lower rank is better.

performance to MVH and RP, in-

dicating their abilities in encoding distinguishable semantic patterns. Line Plot remarkably underper-
forms, thus may not fit this task. For forecasting, UVH and MVH are used in conjunction with the
reconstruction framework in Fig. 1(d) because they preserve raw time series values in pixels. Other
imaging methods produce pixels with different meanings, rendering reconstruction inappropriate,
thus they use the framework in Fig. 1(c). From Fig. 4(b), the best performance of UVH and MVH
suggests their suitability in numerical level tasks by leveraging LVMs’ knowledge acquired from
reconstructing masked pixels during pre-training.

[RQ3] Are the pre-trained parameters in LVMs useful in time series tasks? We test whether the
knowledge learned during pre-training is useful in time series tasks by comparing three kinds of abla-
tions: (1) training LVMs from scratch, (2) freezing LVM’s parameters (i.e., zero-shot performance),
and (3) fine-tuning LVMs with a few epochs. Since different tasks may need different fine-tuning
strategies, we include a series of fine-tuning ablations that progressively freeze the key components
in the Transformer block of LVMs. Fig. 5 shows the key components. To sum up, our ablations in
this study include (a) Fine-tune all parameters; (b) Fine-tune all parameters but freeze CLS token and



Task Classification Forecasting
Dataset UWave. Spoken. Handwrit. FaceDetect.[ETThl ETTm1 Illiness Weather

W/0-LVM | 782%  49.7% 81.7% 193% |762% 98.4% 116.4% 24.1%
LVM2ATTN| 86.4%  50.6% 89.9% 22.4% | 79.7% 117.1% 109.1% 24.4%

LVM 80.7%  84.7% 91.5%  29.2% 83.8% 118.4% 162.8% 44.5%
w/0-LVM 6.6% 12.4% 74.6% 10.8% 144% 283% 41.6% 2.4%
LVM2ATTN| 8.7%  11.6% 83.6% 11.3% 195% 448% 693%  2.4%
LVM 36.4% 30.2% 86.5%  9.3% 145% 482% 21.3%  9.6%

W/0-LVM | 98.8% 82.2% 835% 22.8% 13.0% 145.3% 11.0% 34.0%
LVM2ATTN| 98.9%  82.3% 87.0%  24.6% 9.1% 158.3% 27.9% 35.5%
LVM 59.4%  89.9% 97.0%  9.2% 142% 242.3% 23.0% 67.2%
w/0-LVM | -1.0% 3.1% 223%  -1.2% 473% 585% 94.1% 33.4%
LVM2ATTN| 1.0% 3.6% 203%  2.7% 46.0% 70.3% 127.8% 33.6%
LVM 29.0%  41.8% 56.0%  7.4% 47.5% 58.4% 128.9% 49.6%

MaskingEx-Half| Sf-Half| Sf-All

Table 4: Performance drop of the compared models under different temporal perturbations. Red color
marks the largest drop for each perturbation strategy. Full results are in Appendix B.7.

Mask token; (c) Fine-tune MLP and norm layers only; (d) Fine-tune norm layer only; (e) freeze all
parameters (i.e., zero-shot); and (f) randomly initialize an LVM and train it from scratch.

Table 3 (upper panel) summarizes the results. For TSC, we observe

N
that zero-shot performance is better than training from scratch in o N
all cases, suggesting LVMs indeed transfer useful knowledge. Fine- D
tuning all parameters.with a few epochs always improves over zero- A

shot cases, further validating effective knowledge transfer. Moreover,

ﬁne—tun.ing MLP .& norm laye.rs is comparable to full fine-tuning, Goroieaiieaion
suggesting a minimal fine-tuning effort in this task. For TSF, sur-

prisingly, neither of zero-shot case nor fine-tuning all parameters Multi-Head Attention
consistently outperforms training from scratch. However, only fine-

tuning the norm layer significantly boosts the performance. This T 1T 1 T 1

may be caused by the low-level nature of the forecasting task. The | cLs Patch Patch ' Mask Mask
model needs to predict numerical values, which is largely influenced =~ == =5 s
by normalization, while fine-tuning more than necessary may lead  Fijgyre 5: Key components in
to overfitting. This is in contrast to classification, where the learning | \Ms’ Transformer block.
of high-level semantic patterns is influenced by more layers than

normalization, thus fine-tuning more parameters is beneficial.

[RO4] How useful are LVMs’ architectures? In [RQ3], training LVMs from scratch is prone to
overfitting due to LVMs’ complex architectures. To examine whether LVMSs’ architecture is over-
complex for time series analysis, we run the two simpler models introduced in §3, i.e., W/0-LVM and
LVM2ATTN, which are less likely to overfit the training data. Table 3 (bottom panel) summarizes
their results. We observe that training from scratch does not consistently outperform simple models.
This implies that the LVM’s architecture itself is over-complex. However, since training from scratch
is no worse than the simpler models, the overfitting issue is not serious. Moreover, the zero-shot and all
fine-tuning cases outperform W/0-LVM and LVM2ATTN in TSC. Fine-tuning case (d) consistently
outperforms W/0-LVM and LVM2ATTN in TSF. These results indicate LVMs’ architectures are not
over-complex as a container of transferrable knowledge learned during pre-training.

[RQ5] Do LVMs capture temporal order of time series? Temporal order plays a critical role in
time series analysis. Like [55] and [44], it is of significant interests to understand whether LVMs
can capture the temporal information. To this end, following [44], we perturb the temporal order by
four methods (1) Sf-All: randomly shuffle all of the time points; (2) Sf-Half: randomly shuffle the
first half of the time points; (3) Ex-Half: swap the first and second halves of the time points; and
(4) Masking: randomly mask 50% time points. Table 4 summarizes the relative performance drop.
Following [55, 44], simple models are compared for their effectiveness in capturing temporal order.
From Table 4, we can see that LVMs always have a performance drop under temporal perturbations.
Moreover, they are more vulnerable to temporal perturbations than the ablations. This implies LVMs
are very likely making effective use of temporal patterns in time series during their inferences.

[RQG6] What are the computational costs of LVMs? We evaluate the training and inference time of
LVMs. Training time is measured when a model converges with early stopping. Inference time is



Method \ LVM 1st Baseline (task specific) 2nd Baseline (task specific)
Task  Dataset

# Param (M) Train (min) Inference(ms) | # Param (M) Train (min) Inference(ms) | # Param (M) Time (min) Inference(ms)
23.72 .62 1.33 50.51 247 0.51 0.78

pgc  Handwrit 97.59 5.18
Spoken. 105.57 58.79 25.62 82.42 7.26 44.63 1.20 3.28 0.49
tsg  ETTh 111.91 9.99 4.32 3.75 0.52 0.18 85.02 10.46 0.50
Weather 11191 207.83 1.50 6.90 16.97 0.10 86.64 94.10 0.35

Table 5: Computational costs of LVMs and two best baselines in TSC (GPT4TS, TimesNet) and TSF
(PatchTST, GPT4TS). The forecasting costs are measured with prediction length 96.
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Figure 6: Inference time vs. performance of compared methods on TSC (accuracy) using Handwriting,
SpokenArabicDigits, and TSF (MSE) using ETTh1, Weather. Full results are in Appendix B.10.
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estimated by the average runtime per test sample. Table 5 compares LVMs with the best two baselines
in TSC (Fig. 2) — GPTATS, TimesNet, and TSF (Table 2) — PatchTST, GPT4TS. From Table 5, LVMs
have more parameters than the baselines. On average, LVMs take 6x (15x) training time than the best
TSC (TSF) baseline, primarily due to their larger sizes of trainable parameters. For inference, LVMs
are 0.5x faster than the best TSC baseline, but are 24x slower than the best TSF baseline. This is
incurred by both the parameter size and the extra costs to imaging time series. Fig. 6 shows inference
time vs. performance. Compared to the best baselines, LVMs trade the computational overhead
for better performance. This is also evident in Fig. 2 and Table 2. Considering the fast developing
hardware, the results suggest a big potential of LVMs in future time series research.

4.4 More Analysis of LVMs’ Suitability in Time Series Forecasting

As the forecasting task shows more challenges than the classification task, we conduct more in-depth
analysis to dissect LVMs’ potential in TSF as follows.

[RQ7] Which component of LVMs contributes more to forecasting? Usually, pre-trained encoders
are considered as general feature extractors and widely used in knowledge transfer. In contrast,
pre-trained decoders are task-specific thus are often abandoned in a downstream task. However, the
conclusion looks counterintuitive when adapting LVMs to TSF. Fig. 7 shows the performance drop of
two ablations relative to MAE and SimMIM: (1) Enc w/o Dec preserves the pre-trained encoder but
randomly initializes the decoder; (2) Dec w/o Enc preserves the pre-trained decoder but randomly
initializes the encoder. Both ablations are fine-tuned until convergence. From Fig. 7, for LVMs, Enc
w/o Dec drops more than Dec w/o Enc, implying the pre-trained decoders play more important
roles than the encoders in TSF. This is because LVMs’ decoders aim to reconstruct pixel values,
thus fitting the low-level TSF task. Surprisingly, SimMIM’s decoder is merely a linear layer that
only occupies 3.8% of all parameters, which however overwhelms its much larger encoder, further
underscoring the essential role of LVMs’ pre-trained decoders in forecasting.

[RQ8] Will period-based imaging method induce any bias? In Table 2, the best LVM forecaster
is MAE with UVH imaging. As shown in Fig. 1(a)(d), UVH is a period-based imaging method —
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Figure 10: TSF performance (MSE) of MAE with varying look-back window (or context) lengths.

it stacks length-L segments of a UTS x into a 2D image of size L x |T/L|, where L is a period.
We find this method leads to an inductive bias towards “forecasting periods”. In Fig. 8, we
evaluate MAE’s forecasting performance by changing the segment length from %L to %L, where the
MSE values are min-max normalized to range [0, 1]. In Fig. 8, an estimated MSE is added at 0 by
averaging the MSEs at L and 2L since length-0 is not computable. This (and the green lines) will
be used later. From Fig. 8, MAE’s best performance occurs at L and 2L, implying (1) the datasets
show strong periodicity; and (2) MAE tends to infer future by “combining” past segments. When
past segments do not coincide with periods, i.e., # L or 2L, MAE fails to forecast accurately.

Time

Interestingly, following the UVH imaging method, we can
estimate the dlfﬁculty of TSF for MAE by using the segment Number of segments before S reoccurs
length. Basically, the difficulty highly correlates with how long S

a segment can reoccur, measured by the number of segments $ § 8 . 2 S e
between the two occurrences (Fig. 9). If the two occurrences Segments
are far apart, it is more difficult for MAE to capture periodic

patterns. More formally, if we divide the UTS into length- L ~ Figure 9: An illustration of UVH.
segments, e.g., in Fig. 8, k = 6,7 = [1, ..., 12], the following

Lemma tells how to infer the number of segments before a specific segment reoccurs.

Lemma 1. Let x be a UTS with a perfect period L, i.e., X; = X441, If X is divided into length-%L
segments, where i,k € NT, the smallest number of segments, n, before any segment reoccurs, i.e.,
Xt = Xyin-(i/k)L 15 given by n = ﬁ(m) where GCD is the greatest common divisor.

The proof of Lemma 1 is in Appendix C. Lemma 1 states we can calculate n given ¢ and k. To validate
the correlation between n and the difficulty of TSF, we calculate 7 in Fig. 8, and normalize it to range
[0,1]. nis small when £ = 1,2 - n =1lor + = 3,3 — n = 2, leading to an “M”-shape curve
(green). Its coincidence with the MSEs on ETTh1 and ETTm1 datasets validates our estimation of
TSF difficulty, implying MAE “combines past” to forecast future. In contrast, the MSEs on Weather
and Illness datasets align less with the n-values, likely due to their weaker periodic patterns.

[RQY] Can LVMs make effective use of look-back windows? 1deally, longer look-back windows
facilitate forecasting [55]. We assess MAE with different look-back window lengths in Fig. 10. The
Illness dataset is excluded due to its short time series (966 time steps in total). From Fig. 10, MAE’s
performance improves up to a window length of 1000, after which it plateaus or declines. This may
result from image transformation. Fixed-size input image in pre-trained LVMs has a pixel limit and
may constrain the information captured from longer time series. Excessively long time series may
distort the pixel values as they are uniformly compressed to the limited number of pixels, leading to
loss of temporal information. Fortunately, contemporary LVMs handle sufficiently long windows
well (1000 is long enough in many cases). Future models may extend this capability further.

5 Conclusion

In this work, we explore the potential of LVMs for time series analysis in both high-level (classifica-
tion) and low-level (forecasting) tasks. By experiments with various LVMs and ablations, we offer
insights into whether and how image-pretrained LVMs benefit time series tasks, hopefully helping
ease their adoption across research and practical applications. Our forecasting-specific analysis
highlights key limitations of current LVM forecasters, underscoring the need for improving encoder
utilization, addressing inductive bias, handling longer look-back windows, and diversifying bench-
marks. We hope this study complements existing research and lays the groundwork for multi-modal,
agentic time series analysis.
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A Experimental Setup

A.1 Benchmarks

Time Series Classification. For TSC, following [51, 64], our experiments are conducted on 10
multivariate benchmark datasets from UEA archive [2], which span diverse domains, including
chemical analysis, cognitive neuroscience, gesture recognition, biomedical signal processing, speech
recognition and traffic analysis. Table 6 summarizes the statistics of the datasets.

Dataset Variates Series Length Dataset Size Classes
EthanolConcentration 3 1751 (261, 263, 263) 4
FaceDetection 144 62 (5890, 3524, 3524) 2
Handwriting 3 152 (150, 850, 850) 26
Heartbeat 61 405 (204, 205,205) 2
Japanese Vowels 12 29 (270, 370, 370) 9
PEMS-SF 963 144 (267, 173, 173) 7
SelfRegulationSCP1 6 896 (268, 293, 293) 2
SelfRegulationSCP2 7 1152 (200, 180, 180) 2
SpokenArabicDigits 13 93 (6599, 2199, 2199) 10
UWaveGestureLibrary 3 315 (120, 320, 320) 8

Table 6: Statistics of the datasets for TSC. “Dataset Size” is organized in (Train, Validation, Test).

Time Series Forecasting. For TSF, following [62, 52, 41, 55, 44, 5], our experiments are conducted
on 8 widely used benchmark datasets. The four ETT datasets (ETTh1l, ETTh2, ETTm1, ETTm2)
record oil temperature from two electric transformers, sampled at 15-minute and hourly intervals. The
Weather dataset collects measurements of meteorological indicators in Germany every 10 minutes.
The Illness dataset keeps weekly counts of patients and the influenza-like illness ratio from the United
States. The Traffic dataset measures hourly road occupancy rates from sensors on San Francisco
freeways. The Electricity dataset records hourly electricity consumption of Portuguese clients. Table 7
summarizes the statistics of the datasets.

Dataset # Variates Series Length Dataset Size Frequency
ETThl 7 17420 (8545, 2881, 2881) Hourly
ETTh2 7 17420 (8545, 2881, 2881) Hourly
ETTml 7 69680 (34465, 11521, 11521) 15 mins
ETTm2 7 69680 (34465, 11521, 11521) 15 mins
Weather 321 52696 (36792, 5271, 10540) 10 mins
Illness 7 966 (617, 74, 170) Weekly
Traffic 862 17544 (12185, 1757, 3509) Hourly
Electricity 21 26304 (18317, 2633, 5261) Hourly

Table 7: Statistics of the datasets for TSF. “Dataset Size” is organized in (Train, Validation, Test).

A.2 Baselines

For TSC, following [64], 18 conventional and SOTA baselines are included. For TSF, following
[41, 44, 5], 8 representative LLM-based, Transfomer-based, and non-Transformer-based baselines
are included. Since several baselines are used in both TSC and TSF tasks (e.g., GPTATS, Autoformer,
Dlinear, etc.), there are 21 distinct baselines, which are described as follows.

e GPTA4TS [64] is a foundation model built on GPT for various of time series tasks.

* Time-LLM [19] implements reprogramming to align time series with language so as to leverage
pre-trained LLMs.

» CALF [33] is built upon LLMs by designing a cross attention and feature regularization loss to
align time series with language.

» PatchTST [41] divides time series into subsequence-based patches, which is then modeled as tokens
through Transformer encoders with channel independence strategy.
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¢ Flowformer [16] introduces a linear-time attention mechanism named Flow-Attention without
using specific inductive biases for time series forecasting.

* Informer [62] is a Transformer-based model that designs a ProbSparse attention mechanism to
reduce time complexity on long time series.

e Transformer [47] is the most traditional encoder-decoder structure which can model time series
with attention mechanism.

* Stationary [35] combines series stationarization and de-stationary attention to solve the over-
stationarization problem in time series forecasting.

» Refromer [23] applies locality-sensitive hashing and reversible residual layers to improve the
efficiency of using Transformers to model long time series.

» Autoformer [52] replaces the attention block of Transformer with the Auto-Correlation mechanism
which can enhance both efficiency and accuracy.

* ETSformer [50] decomposes an input time series into interpretable components with exponential
smoothing attention and frequency attention for time series forecasting.

 Pyraformer [34] designs a pyramidal attention module with inter-scale tree structures and intra-scale
neighboring connections to capture multi-resolution temporal dependencies.

* FEDformer [63] combines seasonal-trend decomposition with a frequency-enhanced Transformer
to capture both global patterns and detailed structures in time series.

* Rocket [7] achieves accurate time series classification by using linear classifiers with random
convolutional kernels.

* XGBoost [6] is an efficient implementation of gradient boost decision trees for both classification
and regression tasks.

* Dlinear [55] is a linear model that decomposes an input time series into seasonal component and
trend component, and then models them with linear layers.

* LightTS [59] is an efficient MLP-based architecture for multivariate time series forecasting by
leveraging interval and continuous down-sampling to preserve temporal patterns.

* TimesNet [51] transforms time series into a 2D image-like representation using period-based
patching, and then models the transformed time series with inception blocks.

* TCN [10] is a type of convolutional neural network that use causal, dilated convolutions with
residual connections to model the temporal dependencies in time series.

e LSTNet [25] integrates RNNs and CNNs to capture temporal patterns in time series.

* LSSL [13] is proposed based on a new parameterization for state space model to capture the
long-term dependencies in time series.

A.3 Evaluation Metrics

For TSC, following [51, 64], accuracy (in percentage) is used as the evaluation metric. For TSF,
following [41, 55, 44, 5], Mean Squared Error (MSE) and Mean Absolute Error (MAE) are used as
the evaluation metrics. Eq (1) defines MSE and MAE.

D T D T

1 ~ 9 1 -

MSE = - > Yo~ Yuli, MAE=——3 "% |I¥u~Yauli O
d=1t=1 =1t=1

where Y € RP*T stands for the prediction at 7" future time steps of D variates, Y stands for the

ground truth, || - ||2 is ¢2 norm, and || - ||1 is ¢; norm.

Following [41, 55, 44], for fair comparison, we adopt the standard evaluation protocol. In par-
ticular, the look-back window length is set to H = 336. The prediction lengths is set to
T € {96,192,336,720} for all datasets except for Illness dataset. For Illness dataset, because
of its limited total length of 966 time steps, shorter look-back window of H = 104 and prediction
lengths T' € {24, 36,48, 60} are employed by following [41, 55, 44]. Unless otherwise noted, this
configuration is applied to all of the experiments on TSF.
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A.4 Implementation Details

As described in §4.1, 4 pre-trained LVMs have been included in our experiments.
For ViT and Swin, we use the checkpoints ViT_B_16_Weights.IMAGENET1K_V1 and
Swin_B_Weights.IMAGENET1K_V1 respectively from PyTorch, which are pre-trained on 224 x
224 x 3 sized images. For MAE, we use the checkpoint released by Meta Research', which is
pre-trained on 224 x 224 x 3 sized images with ViT-Base backbone. For SimMIM, we use the check-
point released by Microsoft®, which is pre-trained on 192 x 192 x 3 sized images with Swin-Base
backbone.

For TSC task, we fine-tune the LVMs using Adam optimizer with learning rate 0.0001 and batch size
32. The training runs up to a maximum of 30 epochs on the training set. Early stopping is applied
after 8 consecutive epochs of no improvement is observed on the validation set.

For TSF task, we use Adam optimizer with learning rate 0.0001. For ETT and Illness datasets, the
batch size is set to 32. For Weather, Traffic and Electricity datasets, the batch size is set to 256. The
training runs up to 20 epochs on the training set. Early stopping is applied after 3 consecutive epochs
of no improvement is observed on the validation set.

All experiments are repeated three times, and the final result is obtained by taking the average. Unless
otherwise noted, the above training configuration is applied to all experiments.

The experiments are conducted on NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory.
All implementations are based on PyTorch 2.6.0 and utilize CUDA 12.4 for training.

A.5 Imaging Methods

In this section, we elaborate Gramian Angular Field (GAF) and Univariate Heatmap (UVH), as they
are the most frequently used imaging methods in our experiments. For more details about GAF, UVH,
and other imaging methods, we refer readers to [40].

Gramian Angular Field (GAF). Given a univariate time series x = [z, ..., x7] € R'*T, where
z; (1 <7 < T)is the value at time step ¢, GAF applies Min-Max scaling to normalize each zx;
to &; € [0, 1]. This normalization allows each time step to be mapped into polar coordinates with
angular component ¢; = arccos(%;) and radial component r; = i/N, where N is a constant factor.

In Gramian Sum Angular Field (GSAF), the (i, j)-th entry encodes the temporal correlation between
time steps ¢ and j, which is computed as cos(¢; + ¢;) and can be further expanded as following.

cos(¢i+ ;) = &it; —\[1 =3\ /1 - & )

The resulting GAF is a matrix of size T' x T, with (i, j)-th entry defined as cos(¢; + ¢;), which
captures the pairwise temporal correlations among all time steps. For a multivariate time series
X € R¥*T the resulting GAF consists of d individual 7' x T matrices.

Univariate Heatmap (UVH). Given a univariate time series x € R'*”, UVH applies Fast Fourier
Transform (FFT) to compute the Fourier coefficient of each frequency component f;, where f; €
[1,]|7/2]]. Then it identifies the dominant frequency f7, with the largest coefficient amplitude, and
sets the potential period length as L = [T/ f1]. Next, x is left-padded to a length-T" time series X,
where 7' is a multiple of L. The padded time series X is subsequently reshaped into a 2D image of
size L x T /L by stacking it subsequences of length L.

Segment length selection for UVH. To identify the best segment length for UVH, FFT is applied on
a long look-back window of 1152 time steps on all datasets except for Illness dataset, where 104 time
steps is used to accommodate its short time series. Table 8 summarizes the top-3 potential periods
with the highest Fourier coefficients on each TSF dataset, along with the segment length L used in
the subsequent experiments involving UVH imaging method.

"https://github.com/facebookresearch/mae
“https://github.com/microsoft/SimMIM
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ETThl, ETTh2 ETTml, ETTm2 Weather Illness Traffic Electricity

Top 3 Period (24,576,384}  {96,576,384}  {144,72,576} {52,26,17} {24,12,168} {24, 164,82}
Segment Length L 24 9 144 52 24 24

Table 8: Top-3 potential periods by FFT and segment lengths for UVH on 8 TSF datasets.

B Full Experimental Results

B.1 Full Results of Time Series Classification

Table 9 provides the full results of the compared methods on 10 benchmark datasets for TSC. The
LVM results are averaged over 3 runs. The corresponding standard deviations reported in Table 10.

Dataset | MAE | ViT | XGBoost | Rocket | LSTNet | LSSL | TCN | Trans. | Re. | In. | Pyra. | Auto. | Station. | FED. | ETS. | Flow. | Dlinear | LightTS | TimesNet | GPT4TS

EthanolConcentration | 414 | 494 | 437 | 452 | 399 | 311 [ 289 | 327 | 319 | 31.6 | 30.8 | 31.6 | 327 | 31.2 | 28.1 | 338 | 326 | 297 | 357 | 342

FaceDetection [ 654|674 633 | 647 | 657 | 667 | 528 | 673 | 686 | 67.0 | 657 | 684 | 680 | 660 | 663 | 67.6 | 680 | 675 | 686 | 692
Handwriting [ 395|364 | 158 | 588 | 258 | 24.6 | 533 | 32.0 | 274 | 32.8 | 294 | 367 | 316 | 280 | 325 | 338 | 270 | 261 | 321 | 327
Heartbeat [ 868 | 74.6 | 732 | 756 | 710 | 727 | 756 76.1 |77.1| 80.5 | 756 | 746 | 737 | 737 | 712 [ 716 | 751 | 751 | 780 | 772
Japancse Vowels | 95.4 | 983 | 86.5 | 962 | 98.1 | 984 989 | 987 [97.8 | 989 | 984 | 962 | 992 | 984 | 959 [989 | 962 | 962 | 984 | 986
PEMS-SF [ 844|842 983 | 751 | 867 | 86.1 | 688 | 821 |82.7 | 81.5 | 832 | 82.7 | 873 | 80.9 | 860 | 838 | 75.1 | 884 | 896 | 879
SelfRegulationSCP1_ | 952 | 97.2 | 846 | 908 | 840 | 90.8 | 84.6 | 922 |90.4 | 90.1 | 88.1 | 84.0 | 89.4 | 88.7 | 89.6 | 925 | 873 | 898 | 918 | 932
SclfRegulationSCP2_ | 59.4 | 588 | 489 | 533 | 528 | 522 | 556 | 539 | 567 | 533 | 533 | 50.6 | 572 | 544 | 550 | 56.1 | 505 | 511 | 572 | 594
SpokenArabicDigits | 98.5 | 985 | 69.6 | 712 | 1000 | 100.0 | 95.6 | 984 |97.0 | 100.0 | 99.6 | 100.0 | 100.0 | 100.0 | 100.0 | 988 | 814 | 100.0 | 990 | 99.2
UWaveGeswreLibrary | 850 | 884 | 759 | 944 | 87.8 | 859 | 88.4 | 85.6 | 856 | 85.6 | 83.4 | 859 | 87.5 | 853 | 850 | 86.6 | 82.1 | 803 | 853 | 88.1
Average [ 7511753 660 | 725 | 718 | 709 | 703 | 71.9 [ 715 | 721 | 708 | 711 | 727 | 70.7 | 710 [ 73.0 | 675 | 704 | 736 | 740
# Wins 2 |3 1 | 1 | 1 | 1 | 1] 0 0|11 ]0] 1| 2 [ 1|1 ]0] 0 | 1 | 0 | 2

Table 9: Accuracy (%) of the compared methods in TSC on 10 benchmark datasets. Red numbers are
the the best results. # Wins is the number of times the method performs the best.

Dataset | MAE | ViT

EthanolConcentration | 41.4 £0.5 | 49.4 £0.9
FaceDetection [654+£12]674£15
Handwriting [395+15]364+13
Heartbeat | 86.8 £2.1 | 74.6 £ 0.6
Japanese Vowels | 954+£0.3]983£0.3
PEMS-SF | 844 +£04 | 842£05

SelfRegulationSCP1 | 95.2+£0.6 | 97.2 £ 0.9
SelfRegulationSCP2 | 59.4 £ 1.5 | 588 £ 1.3
SpokenArabicDigits | 98.5 £ 0.5 | 98.5 £ 0.5
UWaveGestureLibrary | 85.0 £ 1.7 | 88.4 = 1.4

Table 10: Standard deviation of LVMs on TSC datasets.

B.2 Full Results of Time Series Forecasting

Table 11 provides the full result of the compared methods on 8 benchmark datasets for TSF. The
results of LVMs are averaged over 3 runs with standard deviations reported in Table 12.
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Method

MAE

ViT

Time-LLM

|  GPT4TS

| CALF

| Dlinear

PatchTST

| TimesNet

| FEDformer | Autoformer

Metrics |

MSE

MAE | MSE

MAE | MSE

MAE | MSE MAE

| MSE MAE

| MSE MAE

MSE MAE

| MSE

MAE

| MSE

MAE |

MSE

MAE

96
192
336
720

ETThl

0.356
0.395
0.417
0.467

0.383
0.406
0.424
0.463

0.398
0.439
0.462
0.479

0.401
0.445
0.458
0.491

0.376
0.407
0.430
0.457

0.402 | 0.370 0.389
0.421 | 0412 0413
0.438 | 0.448 0.431
0.468 | 0.441 0.449

0.370  0.393
0.429 0.426
0.451  0.440
0.476  0.466

0.375  0.399
0.405 0.416
0439 0.443
0472 0.490

0.370  0.399
0413 0421
0422 0.436
0.447  0.466

0.384
0.436
0.491
0.521

0.402
0.429
0.469
0.500

0.376
0.420
0.459
0.506

0.419
0.448
0.465
0.507

0.449
0.500
0.521
0.514

0.459
0.482
0.496
0.512

96
192
336
720

ETTh2

0.297
0.356
0.371
0.403

0.341
0.386
0.402
0.430

0.302
0.394
0.423
0.438

0.355
0.411
0.429
0.449

0.286
0.361
0.390
0.405

0.346 | 0.280 0.335
0.391 | 0.348 0.380
0.414 | 0.380 0.405
0.434 | 0.406 0.436

0.284  0.336
0.353  0.378
0.361 0.394
0.406  0.428

0.289 0.353
0.383 0418
0.448  0.465
0.605  0.551

0.274  0.336
0.339  0.379
0.329  0.380
0379 0.422

0.340
0.402
0.452
0.462

0.374
0.414
0.452
0.468

0.358
0.429
0.496
0.463

0.397
0.439
0.487
0.474

0.346
0.456
0.482
0.515

0.388
0.452
0.486
0.511

96

192
336
720

ETTml

0.284
0.328
0.357
0.411

0.333
0.363
0.384
0.417

0.344
0.414
0.411
0.466

0.384
0.425
0.427
0.451

0.291
0.341
0.359
0.433

0.341 | 0.300 0.340
0.369 | 0.343  0.368
0.379 | 0.376 0.386
0.419 | 0431 0416

0323 0.350
0.375  0.376
0.411 0.401
0.476  0.438

0.299 0.343
0335 0.365
0.369 0.386
0425 0421

0.290 0.342
0332 0.369
0.366  0.392
0416 0.420

0.338
0.374
0.410
0.478

0.375
0.387
0.411
0.450

0.379
0.426
0.445
0.543

0.419
0.441
0.459
0.490

0.505
0.553
0.621
0.671

0.475
0.496
0.537
0.561

96
192
336
720

ETTm2

0.173
0.231
0.282
0.386

0.258
0.297
0.340
0.413

0.179
0.262
0.346
0.411

0.265
0.319
0.371
0.392

0.162
0.235
0.280
0.366

0.248 | 0.163  0.249
0.304 | 0.222  0.291
0.329 | 0.273  0.327
0.382 | 0.357 0.376

0.177  0.255
0.245  0.300
0.309 0.341
0.402  0.395

0.167  0.269
0.224  0.303
0281 0.342
0.397 0421

0.165  0.255
0.220  0.292
0274 0.329
0362 0.385

0.187
0.249
0.321
0.408

0.267
0.309
0.351
0.403

0.203
0.269
0.325
0.421

0.287
0.328
0.366
0.415

0.255
0.281
0.339
0.433

0.339
0.340
0.372
0.432

96
192
336
720

Weather

0.146
0.194
0.243
0.318

0.191
0.238
0.275
0.328

0.162
0.196
0.250
0.329

0.219
0.244
0.286
0.342

0.155
0.223
0.251
0.345

0.199 | 0.148 0.188
0.261 | 0.192  0.230
0.279 | 0.246 0.273
0.342 | 0.320 0.328

0.168  0.207
0.216  0.251
0.271  0.292
0.350  0.345

0.176  0.237
0.220  0.282
0.265 0.319
0333 0.362

0.149  0.198
0.194  0.241
0245 0.282
0314  0.334

0.172
0.219
0.280
0.365

0.220
0.261
0.306
0.359

0.217
0.276
0.339
0.403

0.296
0.336
0.380
0.428

0.266
0.307
0.359
0.419

0.336
0.367
0.395
0.428

24
36
48
60

Tllness

1.977
1.812
1.743
1.816

0.921
0.872
0.856
0.881

1.989
2.123
2.200
2.404

0.941
1.002
1.032
1.087

1.792
1.833
2.269
2177

0.807 | 1.869 0.823
0.833 | 1.853 0.854
1.012 | 1.886 0.855
0.925 | 1.877 0.877

1.460 0.788
1.573  0.837
1.784  0.890
1.982  0.962

2215 1.081
1.963  0.963
2.130  1.024
2368 1.096

1.319  0.754

30 0.834
0.815
0.788

2.317
1.972
2.238
2.027

0.934
0.920
0.940
0.928

3.228
2.679
2.622
2.857

1.260
1.080
1.078
1.157

3.483
3.103
2.669
2.770

1.287
1.148
1.085
1.125

96
192
336
720

Traffic

0.346
0.376
0.389
0.432

0.232
0.245
0.252
0.293

0.403
0.411
0.429
0.477

0.330
0.334
0.335
0.371

0.392
0.409
0.434
0.451

0.267 | 0.396 0.264
0.271 | 0.412  0.268
0.296 | 0.421 0.273
0.291 | 0.455 0.291

0.416 0.274
0.430 0.276
0.451  0.286
0.478 0.301

0.410 0.282
0423 0.287
0436 0.296
0.466 0.315

0.360  0.249
0379 0.256
0.392  0.264
0432 0.286

0.593
0.617
0.629
0.640

0.321
0.336
0.336
0.350

0.587
0.604
0.621
0.626

0.366
0.373
0.383
0.382

0.613
0.616
0.622
0.660

0.388
0.382
0.337
0.408

96
192
336
720

0.127
0.148
0.163
0.199

0.217
0.237
0.253
0.293

0.152
0.164
0.173
0.202

0.244
0.249
0.275
0.294

0.137
0.152
0.169
0.200

0.233 | 0.141  0.239
0.247 | 0.158 0.253
0.267 | 0.172  0.266
0.290 | 0.207 0.293

0.147  0.240
0.163  0.254
0.178  0.270
0.215  0.300

0.140  0.237
0.153  0.249
0.169  0.267
0203 0.301

0.129  0.222
0.157  0.240
0.163  0.259
0.197  0.290

0.168
0.184
0.198
0.220

0.272
0.289
0.300
0.320

0.193
0.201
0.214
0.246

0.308
0.315
0.329
0.355

0.201
0.222
0.231
0.254

0.317
0.334
0.338
0.361

1 | Electricity

Wins |

| 14

| 1

| 0

20

Table 11: MSE and MAE evaluation of the compared methods in TSF on benchmark datasets. Red
(Blue) numbers are the best (second best) results on each prediction length per dataset. # Wins is the
number of times the method performs the best.

Method

MAE

ViT

Metrics

MSE

MAE

MSE

MAE

ETThl

96
192
336
720

0.356 4 0.001
0.395 4 0.001
0.417 £+ 0.001
0.467 + 0.012

0.383 £ 0.005
0.406 £ 0.001
0.424 £ 0.001
0.463 £ 0.010

0.398 £0.011
0.439 + 0.005
0.462 + 0.004
0.479 £ 0.011

0.401 +0.012
0.445 +0.003
0.458 + 0.004
0.491 + 0.008

ETTh2

96
192

720

0.297 + 0.000
0.356 + 0.005
0.371 4 0.003
0.403 4 0.001

0.341 £ 0.004
0.386 £ 0.011
0.402 + 0.004
0.430 + 0.005

0.302 £ 0.001
0.394 + 0.001
0.423 + 0.003
0.438 £ 0.005

0.355 + 0.000
0.411 £+ 0.001
0.429 + 0.001
0.449 £+ 0.002

ETTml

720

0.284 4+ 0.003
0.328 4 0.001
0.357 4+ 0.001
0.411 4 0.002

0.333 £ 0.004
0.363 + 0.002
0.384 £ 0.001
0.417 £0.001

0.344 £ 0.001
0.414 £ 0.003
0.411 + 0.002
0.466 + 0.003

0.384 &+ 0.002
0.425 4+ 0.003
0.427 £ 0.007
0.451 + 0.002

ETTm2

0.173 4 0.005
0.231 4 0.004
0.282 4 0.001
0.386 + 0.002

0.258 £ 0.004
0.297 £ 0.003
0.340 £ 0.004
0.413 £ 0.003

0.179 £ 0.003
0.262 + 0.002
0.346 + 0.001
0.411 £ 0.002

0.265 & 0.004
0.319 +0.001
0.371 £ 0.003
0.392 + 0.004

‘Weather

0.146 + 0.000
0.194 + 0.001
0.243 4 0.000
0.318 4 0.001

0.191 + 0.002
0.238 £ 0.002
0.275 £ 0.001
0.328 £ 0.001

0.162 + 0.001
0.196 + 0.002
0.250 £ 0.001
0.329 + 0.002

0.219 + 0.003
0.244 + 0.003
0.286 + 0.000
0.342 4+ 0.002

Illness

1.977 £ 0.017
1.812+0.014
1.743 £+ 0.029
1.816 & 0.022

0.921 £ 0.003
0.872 + 0.009
0.856 £ 0.012
0.881 + 0.008

1.989 +0.011
2.123 + 0.006
2.200 £ 0.009
2.404 +0.018

0.941 & 0.004
1.002 + 0.003
1.032 & 0.005
1.087 = 0.011

Traffic

0.346 & 0.004
0.376 &+ 0.006
0.389 + 0.004
0.432 4+ 0.002

0.232 £ 0.003
0.245 £ 0.002
0.252 + 0.003
0.293 £ 0.005

0.403 + 0.003
0.411 £ 0.001
0.429 + 0.002
0.477 £ 0.004

0.330 = 0.002
0.334 + 0.000
0.335 + 0.005
0.371 + 0.002

Electricity

96
192
336
720

0.127 4 0.001
0.148 £ 0.004
0.163 4 0.001
0.199 4 0.002

0.217 £ 0.000
0.237 £ 0.000
0.253 £ 0.002
0.293 £ 0.001

0.152 £ 0.001
0.164 £ 0.003
0.173 + 0.002
0.202 + 0.001

0.244 + 0.001
0.249 + 0.001
0.275 4+ 0.003
0.294 4 0.003

Table 12: Standard deviation of LVMs on TSF datasets.
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B.3 Full Results of RQ1: What type of LVM best fits TSC (TSF) task?

The detailed performance comparison between self-supervised LVMs and supervised LVMs using
the best imaging method on TSC (i.e., GAF) and TSF (i.e., UVH) tasks are provided in Table 13 and
Table 14, respectively. For TSC, supervised and self-supervised LVMs perform comparably, while
for TSF, self-supervised LVMs outperform their supervised counterparts.

Dataset | MAE | SimMiM | ViT | Swin

UWaveGestureLibrary | 85.0 83.1 88.4 | 78.9
SpokenArabicDigits 98.5 88.2 98.5 | 87.3

Handwriting 39.5 29.8 36.4 | 33.1
FaceDetection 65.4 57.8 67.4 | 50.3
Average | 72.1 | 647 | 726 | 624

Table 13: Accuracy (%) comparison between self-supervised LVMs and supervised LVMs on TSC
benchmark datasets. Red numbers indicate the best performance for each dataset.

Self-Supervised Supervised
Model MAE P SimMIM ViT P Swin
Dataset

‘ Metrics ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 0.356 0.383 | 0.362 0.383 | 0.398 0.401 | 0.407 0.429
= 192 0.395 0406 | 0.407 0412 | 0439 0.445 | 0.442 0.458
E 336 0.417 0424 | 0422 0417 | 0462 0.458 | 0.467 0.481
m 720 0.467 0463 | 0462 0.455 | 0479 0.491 | 0.470 0.497
Average | 0.409 0419 | 0413 0417 | 0445 0.449 | 0.447 0.466
96 0.284 0.333 | 0.311 0.350 | 0.344 0.384 | 0.308 0.360
E 192 0.328 0.363 | 0.335 0.367 | 0.414 0.425 | 0.350 0.381
E 336 0.357 0384 | 0.356 0.382 | 0.411 0.427 | 0.385 0.407
m 720 0411 0417 | 0400 0.413 | 0466 0.451 | 0.430 0.437
Average | 0.345 0.374 | 0.351 0.378 | 0.409 0.422 | 0.368 0.396
96 0.146 0.191 | 0.148 0.196 | 0.162 0.219 | 0.163 0.216
E 192 0.194 0.238 | 0.196 0.243 | 0.196 0.244 | 0.214 0.262
§ 336 0.243 0.275 | 0.244 0.276 | 0.250 0.286 | 0.270 0.298
= 720 0.318 0.328 | 0.340 0.340 | 0.329 0.342 | 0.345 0.348
Average | 0.225 0.258 | 0.232 0.264 | 0.234 0.273 | 0.248 0.281
24 1.977 0921 | 1.934 0.902 | 1.989 0.941 | 1.990 0.942
@ 36 1.812 0.872 | 1.754 0.825 | 2.123 1.002 | 2.003 0.951
é’ 48 1.743  0.856 | 1.715 0.867 | 2.200 1.032 | 2.084 0.991
= 60 1.816 0.881 | 1.673 0.877 | 2.404 1.087 | 2.128 1.007
Average | 1.837 0.883 | 1.769 0.868 | 2.179 1.016 | 2.051 0.973

Table 14: MSE and MAE Comparison between self-supervised LVMs and supervised LVMs on TSF
datasets. Red numbers indicate the best performance for each prediction length per dataset.

B.4 Full Results of RQ2: Which imaging method best fits TSC (TSF) task?

This section provides detailed performance comparison of 8 imaging methods, including GAF, MVH,
RP, STFT, Wavelet (Wave.), Filterbank (Filter.), UVH, and Line Plot. The best LVMs for TSC (i.e.,
ViT) and TSF (i.e., MAE) are used. Table 15 and Table 16 summarize the results for TSC and TSF,
respectively. Unlike TSF, in which UVH demonstrates a clear advantage on the four datasets in
Table 16, for TSC, we find ranking the compared methods using critical difference diagram (Fig. 4)
over all TSC benchmark datasets gives higher confidence to identify the best imaging method (i.e.,
GAF). Thus Table 15 includes the results on all TSC benchmark datasets.
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Dataset GAF MVH RP STFT Wave. Filter UVH Lineplot

EthanolConcentration | 49.4 | 30.7 | 43.7 | 319 | 273 | 281 | 285 | 252
FaceDetection | 674 | 683 | 655 | 61.1 | 639 | 647 | 67.7 | 503
Handwriting | 364 | 308 | 451 | 282 | 340 | 223 | 258 | 159
Heartbeat | 746 | 775 | 717 | 747 | 726 | 73.1 | 780 | 537
Japanese Vowels | 983 | 97.8 | 87.8 | 94.8 | 949 | 97.0 | 964 | 657
PEMS-SF | 842 | 872 | 80.1 | 68.5 | 847 | 712 | 88.1 | 734
SelfRegulationSCP1 | 97.2 | 904 | 986 | 90.7 | 767 | 556 | 91.8 | 853
SelfRegulationSCP2 | 58.8 | 53.3 | 54.4 | 52.7 | 544 | 522 | 52.8 | 445
SpokenArabicDigits | 98.5 | 97.5 | 984 | 97.9 | 96.1 | 950 | 97.0 | 68.1
UWaveGestureLibrary | 88.4 | 88.7 | 91.8 | 862 | 863 | 52.1 | 843 | 74.0
Average | 753 | 722 | 737 | 687 | 69.1 | 611 | 710 | 556

Table 15: Accuracy (%) comparison of 8 imaging methods on TSC benchmark datasets. Red numbers
indicate the best performance for each dataset.

Imaging Method GAF MVH RP STFT Wave. Filter. UVH Lineplot
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 0986 0.783 | 0.484 0.471 | 0.969 0.771 | 0.534 0.533 | 0.621 0.582 | 0.820 0.684 | 0.356 0.383 | 0.902 0.751

= 192 1.004 0.797 | 0.575 0.517 | 0971 0.775 | 0.621 0.587 | 0.650 0.600 | 0.864 0.707 | 0.395 0.406 | 1.204 0.894
E 336 1.038 0.820 | 0.623 0.546 | 0.989 0.788 | 0.602 0.573 | 0.681 0.616 | 0.827 0.693 | 0.417 0.424 | 1.223 0.901
| 720 1.008 0.812 | 0.737 0.612 | 1.062 0.825 | 0.669 0.621 | 0.699 0.633 | 0.858 0.720 | 0.467 0.463 | 1.150 0.852
Average | 1.009 0.803 | 0.605 0.537 | 0.998 0.790 | 0.607 0.579 | 0.663 0.608 | 0.842 0.701 | 0.409 0.419 | 1.120 0.850

96 0.836  0.729 | 0.310 0.352 | 0.849 0.719 | 0.420 0.470 | 0.449 0.490 | 0.793 0.648 | 0.284 0.333 | 0.842 0.735

B 192 0.830 0.717 | 0.386 0.400 | 0.865 0.726 | 0.466 0.496 | 0.504 0.524 | 0.798 0.649 | 0.328 0.363 | 0.840 0.726
E 336 0.853 0.725 | 0.393 0.402 | 0.872 0.728 | 0.506 0.519 | 0.532 0.535 | 0.883 0.690 | 0.357 0.384 | 0.841 0.726
m 720 0.865 0.726 | 0.488 0.467 | 0.928 0.754 | 0.543 0.536 | 0.586 0.563 | 0.899 0.703 | 0.411 0.417 | 0.872 0.741
Average | 0.846 0.724 | 0.394 0.405 | 0.879 0.732 | 0.484 0.505 | 0.518 0.528 | 0.843 0.673 | 0.345 0.374 | 0.849 0.732

24 5.066 1.591 | 2.326 0976 | 5.106 1.594 | 5.049 1.591 | 4270 1.484 | 7.863 2.056 | 1.977 0.921 | 4993 1.508

2 36 5236 1.628 | 2.152 0919 | 5309 1.629 | 5.143 1.598 | 4293 1.487 | 8.169 2.122 | 1.812 0.872 | 5.147 1.593
E 48 5.118 1.600 | 2.111 0.966 | 5381 1.643 | 5.010 1.574 | 4.190 1.451 | 7.144 1962 | 1.743 0.856 | 5.039 1.541
= 60 5349 1.641 | 2.118 0.968 | 5586 1.685 | 5.164 1.601 | 4.045 1.430 | 7.193 1986 | 1.816 0.881 | 5235 1.601
Average | 5.192 1.615 | 2.177 0.957 | 5.346 1.638 | 5.092 1.591 | 4200 1.463 | 7.592 2.032 | 1.837 0.883 | 5.104 1.561

96 0.581 0.554 | 0.153 0.202 | 0.647 0.610 | 0.202 0.294 | 0.224 0.312 | 0.515 0.488 | 0.146 0.191 | 0.588 0.561

E 192 0.598 0.567 | 0.194 0.241 | 0.649 0.607 | 0.251 0.336 | 0.273 0.354 | 0.516 0.488 | 0.194 0.238 | 0.604 0.574
Bl 336 0.593  0.558 | 0.239 0.275 | 0.674 0.619 | 0.294 0.364 | 0.330 0.388 | 0.505 0.484 | 0.243 0.275 | 0.601 0.568
= 720 0.611 0.574 | 0.337 0.344 | 0.640 0.593 | 0.364 0413 | 0.411 0.433 | 0.513 0.499 | 0.318 0.328 | 0.617 0.582
Average | 0.596 0.563 | 0.231 0.266 | 0.653 0.607 | 0.278 0.352 | 0.310 0.372 | 0.512 0.490 | 0.225 0.258 | 0.603 0.571

Table 16: MSE and MAE comparison of 8 imaging methods on TSF benchmark datasets. Red
numbers indicate the best performance for each dataset.

B.5 Full Results of RQ3: Are the pre-trained parameters in LVMs useful in time series tasks?

Table 17 and Table 18 provide the results of comparing different fine-tuning strategies on TSC and
TSF tasks, respectively. In this ablation analysis, we progressively freeze the components of the
Transformer blocks in LVMs (Fig. 5) with the following settings: (a) Fine-tune all parameters; (b)
Fine-tune all parameters but freeze CLS token and Mask token; (c) Fine-tune MLP and norm layers
only; (d) Fine-tune norm layers only; (e) Freeze all parameters (i.e., zero-shot); and (f) Randomly
initialize an LVM and train it from scratch. From Table 17, for TSC, fully fine-tuning all parameters
yields the best performance. From Table 18, for TSF, fine-tuning only the norm layer leads to better
performance than other settings.

B.6 Full Results of RQ4: How useful are LVMSs’ architectures?

Table 19 and Table 20 provide the results of comparing LVMs’ architecture and two ablation models,
W/0-LVM and LVM2ATTN, on TSC and TSF tasks, respectively. Fig. 11 illustrates the ablation
models. Both models keep the projection layer in LVM encoder. The model W/0-LVM replaces the
Transformer blocks with a linear layer. The model LVM2ATTN replaces the Transformer blocks
with a single multi-head self-attention layer. Other components including input alignment and the
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Dataset @ @ © @ (o ()

UWaveGestureLibrary | 88.4 | 87.5 | 83.7 | 81.6 | 84.0 | 73.4
SpokenArabicDigits | 98.5 | 98.2 | 98.4 | 98.0 | 98.5 | 97.0
Handwriting | 364 | 352 | 35.5 | 285 | 27.8 | 243
FaceDetection | 67.4 | 663 | 67.1 | 652 | 66.7 | 65.0

Table 17: Accuracy (%) comparison of different fine-tuning strategies for on TSC benchmark datasets.
Red numbers indicate the best performance for each dataset.

Fine-tuning Strategy (a) (b) (©) (d) (e) )
Dataset \ Metrics \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE
96 0.512 0.448 | 0481 0.435 | 0477 0418 | 0.356 0.383 | 0426 0.397 | 0412 0.431
= 192 0.511 0.453 | 0.520 0.455 | 0.526 0.456 | 0.395 0.406 | 0.448 0417 | 0462 0.462
E 336 0.610 0.512 | 0.537 0.484 | 0.584 0497 | 0.417 0424 | 0478 0.439 | 0.489 0.479
m 720 0.598 0.523 | 0.581 0.526 | 0.539 0.493 | 0.467 0463 | 0.454 0453 | 0.536 0.514
Average 0.558 0.484 | 0.530 0.475 | 0.532 0.466 | 0.409 0419 | 0.452 0427 | 0475 0472
96 0.303 0.334 | 0.320 0.348 | 0.306 0.338 | 0.284 0.333 | 0.394 0.370 | 0.323 0.367
g 192 0.385 0.385 | 0.389 0.385 | 0.385 0.378 | 0.328 0.363 | 0.404 0.381 | 0.344 0.383
E 336 0.409 0.403 | 0.419 0.407 | 0.420 0.402 | 0.357 0.384 | 0421 0.398 | 0.375 0.403
m 720 0.500 0.461 | 0.503 0.461 | 0474 0.444 | 0411 0417 | 0.462 0.426 | 0.446 0.445
Average 0.399 0.396 | 0.408 0.400 | 0.396 0.391 | 0.345 0.374 | 0.420 0.394 | 0.372 0.400
24 1.888 0.818 | 1.683 0.789 | 2.043 0.818 | 1.977 0.921 | 2.227 0971 | 1.719 0.799
2 36 1.542  0.781 | 1.632 0.801 | 1.573 0.775 | 1.812 0.872 | 2.023 0.932 | 1.541 0.753
E 48 1.682 0.829 | 1.839 0.845 | 1.548 0.783 | 1.743 0.856 | 1.947 0.920 | 1.687 0.817
= 60 2012 0.859 | 1.977 0921 | 1.783 0.860 | 1.816 0.881 | 1.952 0.939 | 1.944 0.880
Average 1.781 0.822 | 1.783 0.839 | 1.737 0.809 | 1.837 0.883 | 2.037 0.941 | 1.723 0.812
96 0.172  0.213 | 0.174 0.213 | 0.171 0.208 | 0.146  0.191 | 0.274 0.280 | 0.154 0.201
E 192 0.225 0.259 | 0.233 0.263 | 0.225 0.256 | 0.194 0.238 | 0.284 0.294 | 0.199 0.245
B 336 0.298 0.302 | 0.296 0.304 | 0.293 0.303 | 0.243 0.275 | 0.311 0.316 | 0.265 0.292
= 720 0.397 0.363 | 0.397 0.364 | 0.367 0.361 | 0.318 0.328 | 0.364 0.354 | 0.344 0.350
Average 0.273 0.284 | 0.275 0.286 | 0.264 0.282 | 0.225 0.258 | 0.308 0.311 | 0.241 0.272

Table 18: MSE and MAE comparison of different fine-tuning strategies on TSF benchmark datasets.
Red numbers indicate the best performance for each dataset.
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1 (Imaging, norm, patching) |
| e 4
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(a) w/o-LVM

-

(b) LVM2Attn

Figure 11: Illustration of LVM’s ablation models. (a) is the model w/0-LVM, which replaces the
Transformer blocks in LVMs with a linear layer. (b) is the model LVM2ATTN, which replaces the
Transformer blocks in LVMs with a single mult-head attention layer.

linear head remain unchanged. In this comparison, all models are trained from scratch without using
pre-trained parameters. From Table 19 and Table 20, without pre-trained knowledge, LVMs perform
on par with wW/0-LVMand LVM2ATTN on both TSC and TSF tasks. However, as demonstrated in
Table 17 and Table 18, with pre-training parameters, LVMs outperform both ablation models.
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Dataset LVMs Ww/0-LVM LVM2ATTN

UWaveGestureLibrary | 734 | 786 | 80.1
SpokenArabicDigits | 97.0 | 964 | 96.5
Handwriting | 243 | 224 | 20.7
FaceDetection | 650 | 641 \ 66.2

Table 19: Accuracy (%) comparison between LVM architecture and ablation models on TSC bench-
mark datasets. Red numbers indicate the best performance for each dataset.

Model LVMs w/0-LVM LVM2ATTN
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE

96 0412 0.431 | 0392 0410 | 0.391 0417

= 192 0462 0.462 | 0.418 0.426 | 0.414 0.435
E 336 0.489 0479 | 0.441 0.443 | 0438 0.452
8a) 720 0.536 0.514 | 0.441 0.465 | 0.469 0.485
Average | 0.475 0472 | 0.423 0.436 | 0.428 0.447

96 0.323 0367 | 0322 0.364 | 0.298 0.354

E 192 0.344 0.383 | 0.353 0.381 | 0.338 0.380
E 336 0.375 0403 | 0.388 0.401 | 0.376 0.401
8a) 720 0.446 0.445 | 0.440 0432 | 0416 0427
Average | 0.372 0.400 | 0.376 0.395 | 0.357 0.391

24 1.719 0.799 | 2.280 1.034 | 1.990 0.909

2 36 1.541 0.753 | 2.224 1.018 | 1.913 0.899
ié 48 1.687 0.817 | 2296 1.039 | 2.105 0.964
= 60 1.944 0.880 | 2.364 1.052 | 2423 1.033
Average | 1.723 0.812 | 2291 1.036 | 2.108 0.951

o 96 0.154 0.201 | 0.188 0.243 | 0.184 0.240
2 192 0.199 0.245 | 0.226 0.273 | 0.226 0.271
Ei 336 0.265 0.292 | 0.270 0.302 | 0.271 0.303
= 720 0.344 0.350 | 0.336  0.347 | 0.335 0.346
Average | 0.241 0.272 | 0.255 0.291 | 0.254 0.290

Table 20: MSE and MAE comparison between LVM architecture and ablation models on TSF
benchmark datasets. Red numbers indicate the best performance for each dataset.

B.7 Full Results of RQS5: Do LVMs capture temporal order of time series?

Four kinds of perturbation, Sf-All, Sf-Half, Ex-Half and Masking, are applied to the time series to
compare the performance drop of LVMs, W/0-LVM, and LVM2ATTN on both TSC and TSF tasks.
Table 21 and Table 22 summarize the results. As can be seen, LVMs are more vulnerable to temporal
perturbations than the ablation models.
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B.8 Full Results of RQ7: Which component of LVMs contributes more to forecasting

Table 23 provides the detailed results on MSE and MAE of the two ablations, Enc w/o Dec and Dec
w/o Enc, of self-supervised LVMs on TSF benchmark datasets. From Table 23, Enc w/o Dec shows
inferior performance to Dec w/o Enc, highlighting the importance of the pre-trained decoders of
LVMs in TSE

\ MAE \ SimMIM
| Pre-trained | Enc w/oDec | Dec w/o Enc
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Model

Pre-trained | Enc w/o Dec | Dec w/o Enc

96 0.356 0.383 | 0.420 0.423 | 0.396 0.401 | 0.362 0.383 | 0.466 0.426 | 0.412 0418

= 192 0395 0.406 | 0.445 0.446 | 0.399 0.414 | 0.407 0.412 | 0.496 0.455 | 0.457 0.446
[[: 336 0417 0424 | 0489 0.484 | 0.441 0433 | 0422 0417 | 0499 0474 | 0581 0.520
m 720 0.467 0463 | 0.582 0.543 | 0.426 0.451 | 0.462 0.455 | 0.505 0.481 | 0.564 0.526
Average | 0.409 0419 | 0484 0474 | 0416 0425 | 0413 0417 | 0492 0.459 | 0.504 0.478

96 0.284 0.333 | 0.324 0363 | 0.295 0.335 | 0.311 0.350 | 0.320 0.347 | 0.299 0.348

E 192 0.328 0.363 | 0.361 0.387 | 0.330 0.364 | 0.335 0.367 | 0.377 0.377 | 0.344 0.378
E; 336 0.357 0.384 | 0.398 0.414 | 0.365 0.388 | 0.356 0.382 | 0.411 0.401 | 0.403 0.419
m 720 0411 0417 | 0.446 0.440 | 0.409 0.416 | 0400 0413 | 0468 0.442 | 0.431 0.433
Average | 0.345 0.374 | 0.382 0.401 | 0.350 0.376 | 0.351 0.378 | 0.394 0.392 | 0.369 0.395

24 1.977 0921 | 1.946 0.842 | 1.774 0.841 | 1.934 0902 | 2314 0.944 | 2.034 0.899

2 36 1.812 0.872 | 1.981 0.895 | 1.918 0.876 | 1.754 0.825 | 2.434 1.045 | 2.198 0.983
ié 48 1.743  0.856 | 1.967 0.855 | 2.061 0.943 | 1.715 0.867 | 2.008 0.869 | 2.209 0.960
= 60 1.816 0.881 | 1.956 0.858 | 1.969 0.950 | 1.673 0.877 | 1.979 0.865 | 2.275 0.997
Average | 1.837 0.883 | 1.963 0.863 | 1.931 0.903 | 1.769 0.868 | 2.184 0.931 | 2.179 0.960

96 0.146 0.191 | 0.168 0.210 | 0.155 0.201 | 0.148 0.196 | 0.166 0.208 | 0.150 0.200

E 192 0.194 0.238 | 0.237 0.263 | 0.209 0.248 | 0.196 0.243 | 0.228 0.257 | 0.199 0.246
E] 336 0.243 0275 | 0.299 0.306 | 0.274 0.298 | 0.244 0276 | 0.294 0.297 | 0.251 0.284
= 720 0318 0.328 | 0.396 0.372 | 0.378 0.361 | 0.340 0.340 | 0.382 0.357 | 0.343 0.342
Average | 0.225 0.258 | 0.275 0.288 | 0.254 0.277 | 0.232 0.264 | 0.268 0.280 | 0.236  0.268

Table 23: MSE and MAE comparison of self-supervised LVMs with either the pre-trained encoder
(Dec w/o Enc) or decoder (Enc w/o Dec) excluded on TSF benchmark datasets.

B.9 Full Results of RQ8: Will period-based imaging method induce any bias?

Fig. 12 provides the forecasting performance of an LVM (i.e., MAE) in terms of metrics MAE w.r.t.
segment length that varies from %L to %L. The LVM generally achieves the best performance when
segment length is a multiple of the period, i.e. L or 2L, which is caused by the inductive bias as

discussed in RQ8 In §4.4.

ETTh1 —*— ETTmi1
—a— Weather Illness

—e— 1 (hypothesis)

Normalized MAE

Segment Length

Figure 12: Forecasting performance (MAE) of an LVM w.rt. varying segment length used in UVH
imaging. n (green) estimates the difficulty of forecasting.
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B.10 Full Results of RQ6: What are the computational costs of LVMs?

Fig. 13 presents the accuracy and inference efficiency comparison between LVMs and the two
best-performing baselines on TSC task. Fig. 14 (Fig. 15) presents the MSE (MAE) and inference
efficiency comparisons between LVMs and the two best-performing baselines on TSF task. In general,
LVMs can yield improved performance with higher costs of inference time.

* LVM @ 1% Baseline B 2" Baseline

UWave. Handwrit.
Swo| 4 o ™ *
N/
i 85.0 31.07 - ‘
) 50 0 50
Spoken. FaceDetect.
—_
§ 99.5] . ‘ 69.01 - ‘
é 98.57 * 67.01 *
0 40 100 200
Inference Time (ms) Inference Time (ms)

Figure 13: Accuracy vs. inference time of the compared methods on TSC benchmark datasets. Green
marker stands for LVM, Red marker stands for GPT4TS and Blue marker stands for TimesNet.

* LVM @ 1% Baseline B 2" Baseline

ETTh1 ETTmi1
0.380 0.320
gz @ 8
0.350 6 é 21 0.270 (V) é v6
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0.151 2.200 *
2 Om O
= * 1.3001 ‘
0-144 0.5 1.0 0 3
Inference Time (ms) Inference Time (ms)

Figure 14: MSE vs. inference time of the compared methods on TSF benchmark datasets. Green
marker stands for LVM, Red marker stands for PatchTST and Blue marker stands for GPT4TS.

* LVM @ 1% Baseline B 2" Baseline

ETTh1 0345 ETTmi1
ﬁ 0.4101 . .
2 0.3807 * *
3 3 p 0-330 5 3 3
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% 0.203 0.9501 *
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Inference Time (ms) Inference Time (ms)

Figure 15: MAE vs. inference time of the compared methods on TSF benchmark datasets. Green
marker stands for LVM, Red marker stands for PatchTST and Blue marker stands for GPT4TS.
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B.11 Full Results of RQ9: Can LVMs make effective use of look-back windows?

Table 24 presents the MSE and MAE performance of LVMs across varying look-back window lengths,
ranging from 48 to 2304. As discussed in RQ9, LVMs exhibits limited ability in fully leveraging the
information of look-back window when the window length exceeds approximately 1000 time steps.
The Illness dataset is omitted in Table 24 because its time series are of short lengths, with only 966
time steps in total.

Look-back Window | 48 | 96 | 192 | 336 | 720 | 152 | 1728 | 2304
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0376 0395|0373 0390 | 0.364 0383 | 0356 0383 [ 0.347 0375 | 0347 0376 | 0.344 0376 | 0373 0402
= 192 | 0440 0431 | 0424 0418 | 0411 0412 | 0.395 0406 | 0.385 0405 | 0384 0402 | 0.391 0.408 | 0.399 0.417
E 336 | 0474 0450 | 0471 0445 | 0456 0437 | 0.417 0424 | 0.408 0418 | 0410 0.418 | 0.395 0413 | 0408 0.423
i 720 | 0485 0477 | 0482 0471 | 0469 0465 | 0.467 0463 | 0.468 0460 | 0.432 0440 | 0425 0442 | 0424 0442
Average | 0.444 0438 | 0438 0431 | 0.425 0424 | 0409 0419 | 0.402 0415 | 0393 0409 | 0.389 0.410 | 0401 0.421
96 | 0443 04130316 0353 | 0.304 0345|0284 0333 [ 0279 0324 | 0280 0332 | 0277 0322 | 0285 0326
g 192 | 0476 0431|0373 0390 | 0.333 0365 | 0328 0363 | 0.322 0358 | 0321 0361 | 0.321 0355 | 0318 0350
£ 33 | 0512 0457 [ 0.385 0400 | 0370 0390 | 0.357 0.384 | 0356 0381 | 0.362 0.383 | 0.352 0378 | 0346 0.374
0 720 | 0574 0489 | 0449 0438 | 0.426 0429 | 0411 0417 [ 0411 0414 | 0399 0413 | 0411 0414 | 0407 0416
Average | 0.501 0448 | 0381 0.395 | 0.358 0382 | 0345 0374 | 0.342 0369 | 0341 0372 | 0.340 0367 | 0339 0367
- 96 0200 0237 [ 0.167 0.209 | 0.152 0.196 | 0.146 0.191 | 0.142 0.188 | 0.144 0.194 | 0.143 0.193 | 0.141 0.195
g 192 0236 0267 | 0212 0.249 | 0.200 0240 | 0.194 0238 | 0.188 0235 | 0.189 0.237 | 0.195 0242 | 0200 0.253
5 336 | 0293 0307 [ 0268 0290 | 0254 0.280 | 0.243 0275 | 0247 0.281 | 0.242 0279 | 0.272 0302 | 0.278  0.307
2 720 | 0370 0358 | 0.346 0340 | 0330 0333 | 0318 0328 | 0.334 0341 | 0332 0339 | 0.344 0349 | 0372 0357
Average | 0275 0292 | 0.248 0272 | 0234 0262 | 0225 0258 | 0.228 0261 | 0227 0.262 | 0.239 0272 | 0248 0.278

Table 24: The MSE and MAE performance of LVMs across different look-back window lengths on
TSF benchmark datasets.

C Proof of Lemma 1
In this section, we provide the proof for Lemma 1.

Proof. Given x is perfectly periodic, T; = T4, 4.1, holds when o € Nt and L is the period. The

smallest number of segments n before any segment reoccurs, i.e., X = X¢in.(i/k)L. indicates
n - (i/k) € NT. Hence, the proof of Lemma 1 is equivalent to prove n = ﬁ(ik) as the smallest

natural number such that & divides n - 4, denoted as k | n - 4.

Set d = GCD(4, k) as the greatest common divisor of ¢ and k. The following is based on the definition
of greated common divisor:

i=d-i 3
k=d-k “4)
GCD(i', k') =1 &)

where i/, k' € NT. As k divides n - i, we have
kin-i=d-k|d-n-i
=k |n-i
=k |n (6)
The first step in Eq. (6) is expanded with Eq. (3) and Eq. (4). The second step cancels the common

factor d from both sides of with the divisibility relation unchanged. The last step follows Eq. (5). To
satisfy Eq. (6), the smallest n is n = k’. Finally, expand &’ with Eq. (4), we reach

n = ]{j/ = ﬁ = 7]6
d ~ GCD(i, k)

D Visualization Results

D.1 Visualization of GAF on TSC Task

To have a sense about what temporal patterns can be recognized by LVMs for TSC, we visualize the
images of GAF method on the Handwriting and UWaveGestureLibrary datasets in Fig. 16 and Fig.
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17, respectively. The examples are randomly sampled from five different classes on both datasets.
From Fig. 16 and Fig. 17, we can observe clear visual patterns that distinguish the GAF images from
different classes, which highlight the effectiveness of GAF as a way to encode time series for LVMs
to process for TSC.

Class Name Example 1 Example 2 Example 3

Letter ‘a’

Letter ‘b’

Letter ‘d’

Letter ‘f

Letter ‘w’

Figure 16: Examples of GAF images on the first channel of multivariate time series with 152 time
steps randomly drawn from five classes in the Handwriting dataset.

28



Class Name Example 1 Example 2 Example 3

Figure 17: Examples of GAF images on the first channel of multivariate time series with 336 time
steps randomly drawn from five classes in the UWaveGestureLibrary dataset.
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D.2 Illustration of An Inductive Bias of LVMs during TSF

As discussed in RQ8, the imaging method UVH can induce an inductive bias to LVMs in TSF toward
“forecasting periods” by rendering them to combine the past segments to infer future. To illustrate
this, Fig. 18 and Fig. 19 visualize two random examples with varying segment lengths from one
period (24 time steps) to two periods (48 time steps) from ETTh1 and Traffic datasets. The blue lines
represent the time series in look-back window, the red lines represent the ground truth in prediction
horizon, and the green lines represent the forecasted time series by LVMs. The results demonstrate
that LVMs perform best when the segment length aligns with the period of the time series, while the
performance degrades when the segment length shifts from the period. This implies the inductive
bias of combining the past periods as forecasts by LVMs with UVH for TSF.

History = ——— Ground Truth === -- Forecast

v
v

(a) Segment length L = 24 (b) Segment length L = 32

v

(c) Segment length L = 36 (d) Segment length L = 48

Figure 18: Visualization of LVM’s inductive bias during TSF on a random example from the ETTh1
dataset (period is 24 time steps). From (a) to (d), the segment length vary within {24, 32, 36, 48}.

History = ——— Ground Truth ==-=-" Forecast

(c) Segment length L = 36 (d) Segment length L = 48

Figure 19: Visualization of LVM’s inductive bias during TSF on a random example from the Traffic
dataset (period is 24 time steps). From (a) to (d), the segment length vary within {24, 32, 36, 48}.
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