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Abstract

Time series, typically represented as numerical sequences, can also be transformed
into images and texts, offering multi-modal views (MMVs) of the same underlying
signal. These MMVs can reveal complementary patterns and enable the use
of powerful pre-trained large models, such as large vision models (LVMs), for
long-term time series forecasting (LTSF). However, as we identified in this work,
applying LVMs to LTSF poses an inductive bias towards “forecasting periods”. To
harness this bias, we propose DMMV, a novel decomposition-based multi-modal
view framework that leverages trend-seasonal decomposition and a novel backcast-
residual based adaptive decomposition to integrate MMVs for LTSF. Comparative
evaluations against 14 state-of-the-art (SOTA) models across diverse datasets show
that DMMV outperforms single-view and existing multi-modal baselines, achieving
the best mean squared error (MSE) on 6 out of 8 benchmark datasets.

1 Introduction

Long-term time series forecasting (LTSF) is vital across domains such as geoscience [1], neuroscience
[3], energy [18], healthcare [28], and smart city [27]. Inspired by the success of Transformers and
Large Language Models (LLMs) in the language domain, recent research has explored similar
architectures for time series [40, 14, 51]. Meanwhile, Large Vision Models (LVMs) like ViT [7],
BEiT [2] and MAE [12], have achieved comparable breakthroughs in the vision domain, prompting
interest in their application to LTSF [4]. These approaches transform time series into image-like
representations, enabling LVMs to extract embeddings for forecasting [29]. The rationale is that
LVMs, pre-trained on large-scale image datasets, can transfer useful knowledge to LTSF due to a
structural similarity: each image channel contains sequences of continuous pixel values analogous to
univariate time series (UTS). This alignment suggests LVMs may be better suited to time series than
LLMs, which process discrete tokens.

This hypothesis is partially validated by the SOTA VisionTS model [4], which applies MAE [12]
to imaged time series and achieves impressive forecasting performance. This progress has spurred
interests in combining imaged time series with other representations. In the past, time series have
been studied through various forms: (1) raw numerical sequences [49, 30], (2) imaged representations
[43, 4], and (3) verbalized (textual) descriptions [46, 10]. While they differ in modality, they represent
alternative views of the same underlying data – unlike typical multi-modal data, where modalities
originate from distinct sources [23]. However, these multi-modal views (MMVs) enable the application
of large pre-trained models, such as LLMs, LVMs, and vision-language models (VLMs) [16, 33], to
time series analysis, specializing them from those in conventional multi-view learning [39], where
multi-view is a broader notion including both MMVs and views of the same modality (e.g., augmented
image views [39]). To distinguish, we use MMVs for time series throughout this paper.
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Leveraging MMVs offers two key advantages: (1) augmenting time series with alternative views
can reveal patterns not evident in the original numerical data, and (2) pre-trained large models
can extract complex patterns specific to certain views, such as visual representations. Motivated
by these benefits and the recent success of LVMs, this work investigates the synergy of MMVs
for LTSF, with a focus on incorporating LVMs. To our knowledge, integrating the visual view of
time series via LVMs alongside other modalities remains underexplored. The most related effort,
Time-VLM [52], uses a VLM (ViLT [16]) to encode visual view and contextual texts of time series,
augmented with a Transformer for the numerical view. All embeddings are combined through a
fusion layer. However, this simple combination strategy overlooks the unique inductive biases of
individual views, leading to suboptimal performance (see §4.1). Moreover, its use of textual inputs
provides only marginal improvements while introducing significant computational overhead due to
the large language encoder.

We propose DMMV, a Decomposition-based Multi-Modal View Framework for LTSF, which inte-
grates numerical and visual views in a compact architecture. We exclude the textual view due to its
marginal gains in Time-VLM [52] and recent doubts about the effectiveness and cost-efficiency of
LLMs for LTSF [36]. DMMV comprises two specialized forecasters: a numerical forecaster and a
visual forecaster. The visual forecaster, inspired by VisionTS [4], uses MAE [12] – a self-supervised
LVM capable of reconstructing masked images – leveraging its strong performance on continuous
values (i.e., pixels). Time series are transformed into images using a period-based patching technique
[43], which, although effective, imposes an inductive bias on LVMs towards periodic signals. To
address this, we design two DMMV variants as illustrated in Fig. 1: (a) DMMV-S (simple decomposi-
tion), which splits the time series into trend and seasonal components, assigning them to the numerical
and visual forecasters, respectively; (b) DMMV-A (adaptive decomposition), which adaptively learns
the decomposition via a backcast-residual mechanism aligned with the two forecasters. DMMV
employs late fusion [17] via a gating mechanism, as intermediate fusion (e.g., embedding-level)
underutilizes MAE’s decoder, which plays a crucial role in pixel prediction. Extensive experiments
show that DMMV significantly outperforms both SOTA single-view methods and Time-VLM, despite
the latter incorporating an additional text encoder. To sum up, our contributions are as follows.

• We distinguish MMVs in time series analysis from the broader notion in conventional multi-view
learning and study the emergent yet underexplored problem of MMV-based LTSF.

• We propose DMMV, a novel MMV framework that is carefully designed to harness an inductive
bias we identified in SOTA LVM-based forecasters, complemented by the strength of a numerical
forecaster, with two technical variants DMMV-S and DMMV-A.

• We conduct comprehensive experiments on benchmark datasets to evaluate DMMV, demonstrating
its superior performance over 14 SOTA baselines and highlighting its potential as a new paradigm
for MMV-based time series learning.

2 Related Work

To the best of our knowledge, this is the first work to explore LVMs in a decomposition-based MMV
framework for LTSF. Our work relates to LVM-based time series forecasting (TSF), Multi-modal
TSF, and Decomposition-based TSF, which are discussed below.

LVM-based TSF. Various vision models, such as ResNet [13], VGG-Net [34], and ViT [7], have
been applied to TSF [50, 47], with some studies exploring image-pretrained CNNs like ResNet [13],
Inception-v1 [35], and VGG-19 [34] for LTSF [19]. The use of LVMs in this area is still emerging,
with most efforts focused on time series classification (e.g., AST [9] uses DeiT [37], ViTST [20] uses
Swin [26]). In contrast, LVMs have seen limited use in TSF, likely due to their lower effectiveness
on low-level (i.e., numerical-level) tasks. The most notable method is VisionTS [4], which adapts
MAE [12] for zero-shot and few-shot TSF. Another method, ViTime [47], trains ViT [7] from scratch
on synthetic imaged time series but does not explore transferring knowledge from image-pretrained
LVMs. Importantly, these approaches rely solely on vision models without incorporating other views
or modalities.

Multi-modal TSF. Recently, large VLMs such as LLaVA [23], CLIP [33], and ViLT [16] have been
explored for time series analysis [41, 32, 56, 52]. The most relevant is Time-VLM [52], which builds
a forecaster on ViLT [16] to encode numerical and visual views, along with contextual texts. While
integrating rich information with a large model, Time-VLM demonstrates promising results in TSF.
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Figure 1: An overview of DMMV framework. (a) DMMV-S uses moving-average to extract trend and
seasonal components. (b) DMMV-A uses a backcast-residual decomposition to automatically learn
trend and seasonal components. In (b), the gray blocks are gray-scale images. “?” marks masks.

However, its fusion strategy closely follows the ViLT backbone and lacks time-series-specific design,
leading to potentially suboptimal performance.

Decomposition-based TSF. Decomposition is a common technique in TSF, with seasonal-trend
decomposition (STD) employed by models like Autoformer [44], FEDformer [54], and DLinear
[49]. Recent work such as Leddam [48] replaces the traditional moving-average kernel in STD
with a learnable one. Residual decomposition is another approach, used by N-BEATS [31] to reduce
forecasting errors and later adopted by DEPTS [8] and CycleNet [21] for period-trend decomposition.
While SparseTSF [22] predicts periods without explicit decomposition, SSCNN [6] introduces an
attention-based method to extract long-term, short-term, seasonal, and spatial components. However,
none of these methods incorporate LVMs. In contrast, our proposed DMMV shares insights with
residual decomposition but is uniquely designed to exploit the inductive bias of LVMs for adaptive
decomposition, setting it apart from prior works.

In summary, the proposed DMMV framework is distinct from existing approaches, yet integrates the
strengths of pre-trained LVMs, the MMV framework, and decomposition techniques.

3 Decomposition-Based Multi-Modal View (DMMV) Framework

Problem Statement. Given a multivariate time series (MTS) X = [x1, ...,xD]⊤ ∈ RD×T within a
look-back window of length T , where xi ∈ RT (1 ≤ i ≤ D) is a UTS of the i-th variate, the goal
of LTSF is to estimate the most likely values of the MTS at future H time steps, i.e., Ŷ ∈ RD×H ,
such that the difference between the estimation and the ground truth Y = XT+1:T+H ∈ RD×H is
minimized in terms of mean squared error (MSE), i.e., 1

D·H
∑D

i=1

∑H
t=1 ∥Ŷit −Yit∥22.
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Figure 2: An illustration of an LVM forecaster

Preliminaries. Masked autoencoder (MAE) [12]
is pre-trained self-supervisedly by reconstruct-
ing masked image patches using ImageNet
dataset [5]. To adapt it to LTSF, VisionTS
[4] adopts a period-based imaging technique in-
troduced by TimesNet [43]. Specifically, each
length-T UTS xi is segmented into ⌊T/P ⌋ sub-
sequences of length P , where P is set to be the
period of xi, which can be obtained using Fast
Fourier Transform (FFT) on xi [43] or from
prior knowledge on sampling frequency. The
subsequences are stacked to form a 2D image Ii ∈ RP×⌊T/P⌋. After standard-deviation normaliza-
tion, Ii is duplicated 3 times to form a gray image of size P × ⌊T/P ⌋ × 3, followed by a bilinear
interpolation to resize it to an image Ĩi of size 224×224×3 to fit the input requirement of MAE. As Fig.
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2 shows, the forecast is achieved by reconstructing a right-appended masked area of Ĩi, corresponding
to the future horizon of xi. The forecast ŷi ∈ RH can be recovered from the reconstructed area by
de-normalization and reverse transformation. The forecast of MTS X is achieved by forecasting over
x1, ..., xD in parallel, following the channel-independence assumption [30].

An Inductive Bias. Due to period-based imaging and the spatial consistency enforced during MAE’s
pixel inference, VitionTS exhibits a strong bias toward inter-period consistency, often overshad-
owing the global trend. Fig. 3 illustrates VisionTS’s forecasts on a synthetic sinusoidal time series
with a period of 24. As shown in Fig. 3(a)-(d), where the segment length P varies from 24 to
48, forecasts alternate between accurate and inaccurate as P shifts from 1×period to 2×period,
highlighting a strong inductive bias toward periodicity. Notably, the forecasts aren’t mere repetitions –
the decreasing intra-period amplitude indicates that LVMs can still capture local trends within each
period. More quantitative results are deferred to Appendix C.2.

(a) Segment length P=24

Time Time Time Time

Look-back window Forecast Ground truth

(b) Segment length P=32 (c) Segment length P=40 (d) Segment length P=48

Figure 3: An illustration of LVM forecaster’s inductive bias. The time series has a period of 24. The
vertical dashed lines mark the segment points. The example indicates a bias towards segment lengths
that are multiples of the period in (a)(d) over other segment lengths in (b)(c).

Motivated by this observation, we design the DMMV framework to leverage the inductive bias of
LVMs while addressing their limitations. Specifically, the visual forecaster fvis(·) (i.e., LVM) focuses
on capturing periodic patterns from the visual view, while the numerical forecaster fnum(·) models
global trends from the numerical view, resulting in more balanced forecasting. Fig. 1 presents the two
DMMV variants – DMMV-S and DMMV-A – within a decomposition-based architecture. Unlike prior
approaches [44, 22, 6, 21], DMMV is explicitly designed to align with the inductive bias of LVMs.

3.1 DMMV with Simple Decomposition (DMMV-S)

DMMV-S adopts a simple moving-average (MOV) decomposition [44], which explicitly decomposes
an input time series xi into a trend part and a seasonal (or periodic) part, reflecting the long-term
progression and the seasonality of xi, respectively. Basically, MOV uses a kernel (i.e., a sliding
window) of length 2⌊P/2⌋+ 1 to extract the component with frequency lower than xi’s sampling
frequency (i.e., 1/P ), highlighting the global trend. The residual component is the seasonal part.
This operation constitutes the decomposition block in Fig. 1(a).

xi
trend = Moving-Average(Padding(xi)), xi

season = xi − xi
trend, 1 ≤ i ≤ D (1)

where Padding(·) keeps the length of xi fixed.

The visual forecaster fvis(·) transforms the input xi
season into a 224 × 224 × 3 image Ĩiseason, and

outputs the forecast ŷi
season ∈ RH for the seasonal component. For the numerical forecaster fnum(·),

rather than imposing a specialized inductive bias, we adopt a general-purpose architecture capable
of capturing long-term dependencies. We investigate the feasibility of two options and leave other
explorations as a future work: (1) A simple linear model motivated by the proven effectiveness of
linear methods in LTSF [49, 22, 21], i.e., ŷi

trend = fnum(x
i
trend) = Wxi

trend + b, where W ∈ RH×T

and b ∈ RH are weight and bias, respectively; and (2) A Transformer-based model inspired by
PatchTST [30], which segments xi

trend into N length-L patches, where N = ⌊T/L⌋+ 1, to form the
input Xi

trend ∈ RL×N , and performs

X̃i
trend = WproX

i
trend +Wpos → X̂i

trend = Transformer(X̃i
trend) → ŷi

trend = Linear(Flatten(X̂i
trend)) (2)

to achieve the forecast ŷi
trend ∈ RH for the trend part, where Wpro ∈ RD′×L is the weight to project

the patches to D′-dimensional embeddings, Wpos ∈ RD′×N is a learnable positional encoding,
Flatten(·) and Linear(·) are flatten and linear operators.

Finally, ŷi
season and ŷi

trend are merged to produce the overall forecast ŷi for the i-th variate. In
particular, instead of using the regular summation-based merge, we design an adaptive merge function
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with a light-weight gate g = sigmoid(wg) ∈ [0, 1], where wg is a learnable scalar parameter. To
sum up, the overall process of DMMV-S is as follows.

ŷi = g ◦ ŷi
season + (1− g) ◦ ŷi

trend, where ŷi
season = fvis(̃I

i
season), ŷi

trend = fnum(x
i
trend) (3)

Remark. One limitation of DMMV-S is the explicit trend-seasonal decomposition placed on the input
xi, which will enforce fnum(·) and fvis(·) to fit pre-defined components extracted by a certain kernel
size. This is not flexible and may not fully leverage LVMs’ potential. To address it, we develop
DMMV-A to have an adaptive decomposition in the next.

3.2 DMMV with Adaptive Decomposition (DMMV-A)

Unlike DMMV-S, DMMV-A implicitly decomposes the input xi into trend and seasonal components
tailored to the strengths of the numerical and visual forecasters, respectively. This is achieved via a
backcast-residual mechanism (Fig. 1(b)) that leverages LVMs’ bias toward periodic patterns. The
input xi is first transformed into an image Ĩi using period-based imaging. Before forecasting, fvis(·)
is used to backcast the look-back window by reconstructing masked segments of Ĩi. An effective
masking strategy must: (1) enable full-window reconstruction; (2) align with the forecasting setup
(Fig. 2); and (3) minimize the usage of fvis(·) to avoid computational overhead. To meet these criteria,
we propose an efficient BackCast-Masking (BCMASK) strategy (Fig. 4), which applies two passes:
masking and reconstructing the left and right halves of Ĩi, respectively.

Îi = [̂Iileft; Î
i
right], with Îileft = fvis(̃I

i
right), Îiright = fvis(̃I

i
left) (4)

where Ĩiright (̃Iileft) is the masked image with right (left) area unmasked, Îileft (̂Iiright) is the reconstructed
left (right) area, Îi is the reconstruction, or backcast, of Ĩi by concatenating Îileft and Îiright.
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Figure 4: An illustration of BCMASK.

BCMASK satisfies all three criteria: (1) it enables
full reconstruction of Ĩi; (2) it uses contiguous seg-
ments in Ĩiright (̃Iileft) to predict adjacent segments
Îileft (̂Iiright), mirroring the forecasting process in Fig.
2; and (3) it minimizes the use of fvis(·) – only
two passes are needed, as some unmasked regions
of Ĩi are required for prediction and must later be
masked to complete the full reconstruction.

Notably, the backcast in image Îi is biased toward
the periodic patterns in Ĩi. After de-normalization
and reverse transformation, a backcast time series
x̂i ∈ RT is recovered, reflecting periodic compo-
nent in xi. The residual ∆xi = xi − x̂i therefore emphasizes the trend. As shown in Fig. 1(b), we
feed ∆xi into fnum(·) to produce ŷi

trend ∈ RH , analogous to its role in DMMV-S. Meanwhile, fvis(·)
predicts from Ĩi, likely yielding the forecast of seasonal component ŷi

season ∈ RH . Finally, ŷi
trend

and ŷi
season are fused via the same gating mechanism as Eq. (3). In summary, this defines the overall

process of DMMV-A as follows.

ŷi = g ◦ ŷi
season + (1− g) ◦ ŷi

trend, where ŷi
season = fvis(̃I

i), ŷi
trend = fnum(∆xi) (5)

Remark. Unlike DMMV-S, DMMV-A automatically learns a decomposition of xi that optimally aligns
fnum(·) and fvis(·) with the forecasting task. As shown in §4.3, this adaptive decomposition effectively
separates seasonal and trend components, leveraging the inductive bias of fvis(·). Unlike the backcast
in N-BEATS [31] – designed merely to extract predictive errors – our approach is specifically tailored
to exploit LVMs’ bias toward periodic patterns, making it fundamentally different.

3.3 Model Optimization

After obtaining Ŷ = [ŷ1, ..., ŷD]⊤ ∈ RD×H , DMMV is trained by minimizing the MSE between
Ŷ and Y, i.e., 1

D·H
∑D

i=1

∑H
t=1 ∥Ŷit −Yit∥22. As shown in Fig. 1, fnum(·) is trained from scratch,

while fvis(·) uses pre-trained LVM weights with partial fine-tuning. We find that fine-tuning only
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the normalization layers yields the best performance, consistent with the findings in [55]. For the
choice of LVM, we tested MAE [12] and SimMIM [45], both are self-supervisedly pre-trained LVMs,
in §4.2. MAE performs better and is set as the default. Training begins with fvis(·) frozen while fnum(·)
is trained for a number of epochs (e.g., ∼30). Then, the norm layers of fvis(·) are unfrozen and
fine-tuned jointly with fnum(·) until convergence or early stopping.

4 Experiments
In this section, we compare DMMV with the SOTA methods on LTSF benchmark datasets, and
analyze its effectiveness with both quantitative and qualitative studies.

Datasets. We adopt 8 widely used MTS benchmarks: ETT (Electricity Transformer Temperature)
[53], including ETTh1, ETTh2, ETTm1, ETTm2; Weather [44], Illness [44], Traffic [44], and
Electricity [38]. Following standard protocols [44], we split the datasets chronologically into train-
ing/validation/test sets using a 60%/20%/20% ratio for ETT and 70%/10%/20% for the others. The
prediction horizon H is set to {24, 36, 48, 60} for Illness, and {96, 192, 336, 720} for the remaining
datasets. The look-back window T is fixed at 336. Full dataset details are provided in Appendix A.1.

The Compared Methods. We compare DMMV with the SOTA methods, including VLM-based multi-
modal model: (1) Time-VLM [52]; LVM-based model: (2) VisionTS [4]; LLM-based models: (3)
Time-LLM [15], (4) GPT4TS [55], (5) CALF [24]; Transformer-based models: (6) PatchTST [30], (7)
FEDformer [54], (8) Autoformer [44], (9) Stationary [25], (10) ETSformer [42], (11) Informer
[53]; and non-Transformer models: (12) DLinear [49], (13) TimesNet [43], (14) CycleNet [21].
As we use the standard evaluation protocol, we collect results from prior works: Time-VLM ([52]),
LLM-based models (reproduced by [36]), Transformer-based models, PatchTST and TimesNet
([4]), and CycleNet ([21]). Since VisionTS in [4] originally uses dynamic look-back windows such
as T = 1152 and T = 2304, we re-run it with T = 336 for fair comparison. CycleNet’s results on
the Illness dataset is unavailable in [21]. Thus we run its official code on the Illness dataset.

We evaluate both DMMV variants – DMMV-S and DMMV-A. A linear forecaster (§3.1) and MAE are
set as the default in fnum(·) and fvis(·), respectively. Ablation studies (§4.2) include variants with
a Transformer-based fnum(·) and SimMIM as fvis(·). Following [4], the imaging period P (§3) for
both VisionTS and DMMV is set based on each dataset’s sampling frequency (see Appendix A.1).
Additional details on all compared methods are in Appendix A.2.

Evaluation. Following [30, 49, 36], we use Mean Squared Error (MSE) and Mean Absolute Error
(MAE) to evaluate the LTSF performance of the compared methods.

4.1 Experimental Results

Table 1 summarizes the LTSF performance of 10 representative methods across four categories:
MMV-based, visual-view-based, language-view-based, and numerical-view-based approaches, with
full results for all 16 methods provided in Appendix C.1. Time-VLM’s results on the Illness dataset
are not reported in [52] and its code is unavailable at the time of this experiment, thus are marked by
“–”. For DMMV, the stronger variant, DMMV-A, is reported. In Table 1, several key insights emerge:
(1) MMV and visual-view methods generally outperform language-view methods, underscoring
the effectiveness of LVMs, particularly when integrated within MMV frameworks; (2) Numerical-
view models such as PatchTST and CycleNet remain competitive, especially on datasets where
VisionTS underperforms (e.g., ETTm2 and Electricity), highlighting their potential to complement
visual models; (3) The strong results of CycleNet, a lightweight model with learnable decomposition,
demonstrate the value of combining simplicity with structure in LTSF; (4) Notably, DMMV-A, which
unifies visual and numerical views through a novel adaptive decomposition, outperforms the baselines
in most cases, achieving 43 first-places and confirming its effectiveness; (5) Lastly, while VisionTS
performs well on highly periodic datasets (e.g., ETTh1, ETTm1, Traffic) due to MAE’s inductive bias
toward periodicity, DMMV-A alleviates this bias, resulting in more generalizable forecasts.

Fig. 5 presents critical difference (CD) diagrams [11] showing the average rank of all 16 methods
based on MSE and MAE across prediction lengths and all datasets. DMMV-S ranks 4.5/16 in MSE
and 7.1/16 in MAE, underscoring the benefit of the adaptive decomposition used in DMMV-A (Fig.
1(b)). From Fig. 5, DMMV-S’s comparable ranks to CycleNet indicate even with a simpler, fixed
decomposition, DMMV-S exhibits an ability that a strong SOTA model with learnable decomposition
has. In §4.3, a detailed comparison between DMMV-S and DMMV-A is provided.
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Table 1: LTSF performance comparison on the benchmark datasets. Lower MSE and MAE indicate
better performance. Red values indicate the best MSE and MAE per row. Time-VLM’s results on the
Illness dataset are unavailable in [52] and its code is unavailable at the time of this experiment.

View Multi-Modal Visual Language Numerical

Model DMMV-A Time-VLM VisionTS GPT4TS Time-LLM PatchTST CycleNet TimesNet DLinear FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.354 0.389 0.361 0.386 0.355 0.386 0.370 0.389 0.376 0.402 0.370 0.399 0.374 0.396 0.384 0.402 0.375 0.399 0.376 0.419
192 0.393 0.405 0.397 0.415 0.395 0.407 0.412 0.413 0.407 0.421 0.413 0.421 0.406 0.415 0.436 0.429 0.405 0.416 0.420 0.448
336 0.387 0.413 0.420 0.421 0.419 0.421 0.448 0.431 0.430 0.438 0.422 0.436 0.431 0.430 0.491 0.469 0.439 0.416 0.459 0.465
720 0.445 0.450 0.441 0.458 0.458 0.460 0.441 0.449 0.457 0.468 0.447 0.466 0.450 0.464 0.521 0.500 0.472 0.490 0.506 0.507E

T
T

h1

Avg. 0.395 0.414 0.405 0.420 0.407 0.419 0.418 0.421 0.418 0.432 0.413 0.431 0.415 0.426 0.458 0.450 0.423 0.430 0.440 0.460
96 0.294 0.349 0.267 0.335 0.288 0.334 0.280 0.335 0.286 0.346 0.274 0.336 0.279 0.341 0.340 0.374 0.289 0.353 0.358 0.397
192 0.339 0.395 0.326 0.373 0.349 0.380 0.348 0.380 0.361 0.391 0.339 0.379 0.342 0.385 0.402 0.414 0.383 0.418 0.429 0.439
336 0.322 0.384 0.357 0.406 0.364 0.398 0.380 0.405 0.390 0.414 0.329 0.380 0.371 0.413 0.452 0.452 0.448 0.465 0.496 0.487
720 0.392 0.425 0.412 0.449 0.403 0.431 0.406 0.436 0.405 0.434 0.379 0.422 0.426 0.451 0.462 0.468 0.605 0.551 0.463 0.474E

T
T

h2

Avg. 0.337 0.388 0.341 0.391 0.351 0.386 0.354 0.389 0.361 0.396 0.330 0.379 0.355 0.398 0.414 0.427 0.431 0.447 0.437 0.449
96 0.279 0.329 0.304 0.346 0.284 0.332 0.300 0.340 0.291 0.341 0.290 0.342 0.299 0.348 0.338 0.375 0.299 0.343 0.379 0.419
192 0.317 0.357 0.332 0.366 0.327 0.362 0.343 0.368 0.341 0.369 0.332 0.369 0.334 0.367 0.374 0.387 0.335 0.365 0.426 0.441
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Avg. 0.382 0.257 0.419 0.304 0.386 0.256 0.421 0.274 0.422 0.281 0.391 0.264 0.421 0.289 0.620 0.336 0.434 0.295 0.610 0.376
# Wins 43 9 9 7 1 9 11 0 0 0

(a) MSE Ranking (b) MAE Ranking

Figure 5: Critical difference (CD) diagram on the average rank of all 16 compared methods in terms
of (a) MSE and (b) MAE over all benchmark datasets. The lower rank (left of the scale) is better.

4.2 Ablation Analysis

We validate the design of DMMV-A through ablation studies on four datasets; DMMV-S results are
deferred to Appendix C.3 for brevity. Table 2 summarizes the analysis: (a) replaces the linear model in
fnum(·) with a PatchTST-style Transformer (see §3.1); (b) swaps MAE with SimMIM [45] as fvis(·);
(c) replaces the gating fusion with a simple sum; (d) removes BCMASK, performing backcasting and
forecasting on the full, unmasked look-back window; (e) substitutes BCMASK with random masking;
(f) freezes the entire fvis(·) instead of fine-tuning norm layers; and (g) removes the backcast-residual
mechanism, feeding both fnum(·) and fvis(·) the same input xi and merging their outputs via gating.

Table 2 reveals key insights into DMMV-A’s design. In (a), replacing the linear numerical forecaster
with a Transformer slightly degrades performance, likely due to the increased difficulty of jointly
training Transformer with LVMs. In (b), MAE outperforms SimMIM as fvis(·), likely due to its
ViT-based reconstruction decoder being better suited for pixel-level tasks like LTSF than SimMIM’s
linear decoder, while both models share similar encoder architectures. In (c), gate-based fusion
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Table 2: Ablation analysis of DMMV-A. MSE and MAE are averaged over different prediction lengths.
Lower MSE and MAE are better. “Improvement” of each ablation is relative to DMMV-A.

Dataset (→) ETTh1 ETTm1 Illness Weather
Method (↓), Metric (→) MSE MAE MSE MAE MSE MAE MSE MAE

DMMV-A 0.395 0.414 0.340 0.371 1.407 0.771 0.217 0.256
(a) fnum(·) → Transformer 0.407 0.421 0.339 0.372 1.442 0.786 0.219 0.260

Improvement -3.04% -1.69% +0.29% -0.27% -2.49% -1.95% -0.92% -1.56%
(b) fvis(·) → SimMIM 0.407 0.415 0.345 0.377 1.649 0.814 0.227 0.261

Improvement -3.04% -0.24% -1.47% -1.62% -17.20% -5.58% -4.61% -1.95%
(c) Gate → Sum 0.414 0.427 0.352 0.383 1.606 0.863 0.233 0.278

Improvement -4.81% -3.14% -3.53% -3.23% -14.14% -11.93% -7.37% -8.59%
(d) BCMASK→ No mask 0.426 0.441 0.349 0.377 1.493 0.828 0.221 0.267

Improvement -7.85% -6.52% -2.65% -1.62% -6.11% -7.39% -1.84% -4.30%
(e) BCMASK→ Random mask 0.394 0.414 0.340 0.372 1.472 0.829 0.223 0.262

Improvement 0.25% 0.00% 0.00% -0.27% -4.62% -7.52% -2.76% -2.34%
(f) Freeze fvis(·) 0.431 0.428 0.358 0.380 1.442 0.773 0.246 0.288

Improvement -9.11% -3.38% -5.29% -2.43% -2.49% -0.26% -13.36% -12.50%
(g) W/o decomposition 0.408 0.424 0.338 0.373 1.712 0.903 0.219 0.268

Improvement -3.29% -2.42% 0.59% -0.54% -21.68% -17.12% -0.92% -4.69%

ETTh1 ETTm1 ETTh2 ETTm2 weather traffic electricity illness
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Figure 6: Comparing DMMV-S and DMMV-A w.r.t. gate weights on visual and numerical forecasters.

outperforms simple summation, highlighting its adaptability to the distinct outputs of fnum(·) and
fvis(·). (d) and (e) underscore the importance of BCMASK: removing it (i.e., (d) “No mask”) recovers
the full look-back window as the backcasted seasonal component, diminishing the trend signal and
weakening fnum(·), while “Random mask” (i.e., (e)) performs slightly worse due to poorer periodic
pattern extraction, which leads to many fluctuations. In §4.3, we provide visual examples to compare
these masking strategies. In (f), fine-tuning only the norm layers significantly improves performance
over freezing, confirming the benefit of coordinated learning between forecasters, as described in §3.3.
Finally, (g) shows that removing the backcast-residual mechanism causes a major performance drop,
affirming its role in effective decomposition. Overall, the LVM decoder, fusion strategy, masking
method, training approach, and decomposition mechanism are crucial to DMMV-A’s success.

4.3 Performance Analysis

In this section, we perform an in-depth analysis of DMMV using the same four datasets as in §4.2.

The Difference between DMMV-S and DMMV-A. Fig. 5 highlights DMMV-A’s superiority over
DMMV-S, largely due to its adaptive decomposition mechanism. A key advantage of the gate-based
fusion is its interpretability. As shown in Fig. 6, which presents average gate weights across datasets,
DMMV-A consistently places more weight on fvis(·), while DMMV-S tends to balance both fnum(·)
and fvis(·) but leans toward fnum(·). In DMMV-A, these weights are learned based on forecasting
performance, emphasizing fvis(·)’s importance. Notably, although fnum(·) receives less weight, it
remains essential – as evidenced by DMMV-A outperforming the visual-only baseline VisionTS
in Table 1. In contrast, DMMV-S’s weights are limited by its fixed moving-average decomposition,
leading to a non-adaptive and suboptimal allocation of forecasting roles.

Fig. 7 provides example decompositions by DMMV-S and DMMV-A (additional cases in Appendix
C.4). DMMV-A produces a smooth, clearly periodic component – consistent with expectations, and a
trend component with some noises. In contrast, DMMV-S’s moving-average yields a smoother trend
by absorbing fluctuations, pushing noise into the seasonal component. This makes forecasting harder
for fvis(·), which is more sensitive to fluctuations than fnum(·), resulting in lower weights of fvis(·) in
Fig. 6. Since periodic patterns are crucial for long-term forecasting, as identified by [22, 21], the
clearer period separation in DMMV-A leads to forecasts that better match the ground truth.
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(a) DMMV-S Forecast

(d) DMMV-A Forecast

(b) DMMV-S Seasonal (c) DMMV-S Trend

(e) DMMV-A Seasonal (f) DMMV-A Trend

Look-back window Forecast Ground truth

Figure 7: The decompositions of DMMV-S and DMMV-A on the same example in ETTh1: (a)(d)
input time series and forecasts, (b)(e) seasonal component, and (c)(f) trend component.

(a) Input Image (b) Input Look-Back Window (c) No Mask Image (d) No Mask Backcast

(e) Rand. Mask Image (f) Rand. Mask Backcast (g) BCMask Image (h) BCMask Backcast

Figure 8: Comparison of different masking methods on the same example in ETTh1. (a) image of
input look-back window; (c)(e)(g) are images of backcast output by DMMV-A: (c) uses “No mask”;
(e) uses “Random mask”; (g) uses BCMASK. (b)(d)(f)(h) are their recovered time series, respectively.
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(c) Weather
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Figure 9: Average MAE comparison with varying look-back window (or context) lengths.

The Effectiveness of BCMASK. Fig. 8 compares the backcast results of DMMV-A using BCMASK,
“No mask”, and “Random mask” (as in Table 2) on a sample case; more examples are in Appendix
C.5. BCMASK produces a smooth image along the temporal (x-axis) segments, effectively capturing
clean periodic patterns. In contrast, “No mask” closely replicates the input, offering no meaningful
decomposition. “Random mask” performs moderately well, resembling BCMASK but with less
temporal smoothness, indicating a less optimal decomposition.

Impact of Look-Back Window. Fig. 9 compares DMMV-A with a visual forecaster (VisionTS) and
two numerical forecasters (PatchTST, DLinear), which can serve as its single-view ablations. Illness
dataset is excluded due to its short time series (966 time steps). Using MAE metric (MSE results in
Appendix C.6), we observe that DMMV-A and VisionTS benefit from longer look-back windows,
while PatchTST and DLinear degrade beyond a length of 336. Notably, DMMV-A outperforms
VisionTS at length 1152, highlighting the advantage of explicitly modeling global trends.

5 Conclusion

This paper introduces DMMV, a novel MMV framework that leverages LVMs and adaptive decomposi-
tion to enhance LTSF. By addressing the inductive bias of LVMs toward periodicity through a tailored
backcast-residual decomposition, DMMV effectively integrates numerical and visual perspectives.
Extensive experiments on benchmark datasets demonstrate that DMMV outperforms both single-view
and SOTA multi-modal baselines, validating its effectiveness. This work highlights the potential of
MMVs and LVMs in advancing LTSF, offering a new direction for future research in this domain.
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A Benchmark and Baseline

A.1 Benchmark Datasets

Following [53, 44, 30, 49, 36, 4], our experiments are conducted on 8 widely used LTSF benchmark
datasets that cover a wide range of sampling frequencies, number of variates, levels of periodicity, and
real-world domains. The four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2) record oil temperature
from two electric transformers, sampled at 15-minute and hourly intervals. The Weather dataset
collects measurements of meteorological indicators in Germany every 10 minutes. The Illness dataset
keeps weekly counts of patients and the influenza-like illness ratio from the United States. The
Traffic dataset measures hourly road occupancy rates from sensors on San Francisco freeways. The
Electricity dataset records hourly electricity consumption of Portuguese clients. Table 3 summarizes
the statistics of the datasets.

Table 3: Statistics of the benchmark datasets. “Dataset Size” is organized in (Train, Validation, Test).

Dataset # Variates Series Length Dataset Size Frequency
ETTh1 7 17420 (8545, 2881, 2881) Hourly
ETTh2 7 17420 (8545, 2881, 2881) Hourly
ETTm1 7 69680 (34465, 11521, 11521) 15 mins
ETTm2 7 69680 (34465, 11521, 11521) 15 mins
Weather 321 52696 (36792, 5271, 10540) 10 mins
Illness 7 966 (617, 74, 170) Weekly
Traffic 862 17544 (12185, 1757, 3509) Hourly
Electricity 21 26304 (18317, 2633, 5261) Hourly

A.2 Baselines

In the following, we provide a brief description for each baseline method involved in our experiments.

• Time-VLM [52] integrates time series data with visual views and contextual texts using a
pre-trained VLM, ViLT, to enhance forecasting performance.

• VisionTS [4] reformulates time series forecasting as an image reconstruction problem using
an LVM, MAE, for zero/few/full-shot forecasting.

• Time-LLM [15] reprograms LLMs by aligning time series patches with text tokens, enabling
time series forecasting without re-training LLMs.

• GPT4TS [55] demonstrates that frozen pretrained LLMs, e.g., GPT, can be directly applied to
a variety of time series tasks with strong performance.

• CALF [24] adapts LLMs to time series forecasting via cross-modal fine-tuning, bridging the
distribution gap between textual and temporal data.

• CycleNet [21] enhances LTSF by explicitly modeling the periodic patterns in time series
through a residual cycle forecasting technique.

• PatchTST [30] introduces a patching strategy and a channel-independence strategy for
LTSF. It uses patches of time series as the input to a Transformer to capture the temporal
dependency of semantically meaningful tokens (i.e., patches).

• TimesNet [43] transforms an input time series into a 2D image-like representation and
models temporal variations in the image using inception-like blocks for time series analysis.

• DLinear [49] decomposes an input time series into trend and seasonal components, each of
which is modeled by linear layers for time series forecasting.

• FEDformer [54] incorporates frequency-enhanced attention mechanisms by combining
Fourier transforms with seasonal-trend decomposition in a Transformer framework.

• Autoformer [44] introduces an auto-correlation mechanism within a Transformer archi-
tecture to capture long-term dependencies in time series data.

• Stationary [25] combines series stationarization and de-stationary attention mechanisms
to solve the over-stationarization problem in time series forecasting.

13



• ETSformer [42] decomposes an input time series into interpretable components with expo-
nential smoothing attention and frequency attention for time series forecasting.

• Informer [53] proposes a ProbSparse self-attention mechanism to reduce the computational
complexity of LTSF with Transformer models.

Algorithm 1: The Training Algorithm of DMMV-A

Input: training dataset Dtrain = {Xi,Yi}ni=1, where Xi ∈ RD×T is an MTS, Yi ∈ RD×H is
the ground truth of forecast

Output: model parameters of DMMV-A

1 Load pre-trained fvis(·) and freeze its weights
2 Randomly initialize fnum(·) and the gating parameter g

/* stage 1: numerical forecaster training */
3 for i← 1 to MaxEpoch do
4 for (X,Y) in Dataloader(Dtrain) do

/* channel-independence strategy is applied in the following */
5 X̂season, Ŷseason ← fvis(X, BCMASK) // backcast/forecast seasonal part
6 Xtrend ← X− X̂season // extract trend component
7 Ŷtrend ← fnum(Xtrend) // forecast trend with fnum(·)
8 Ŷ ← g ◦ Ŷseason + (1− g) ◦ Ŷtrend // gate fusion
9 Calculate ℓMSE(Ŷ,Y) // calculate MSE loss as specified in §3.3

10 Update model parameters of fnum(·) and g
11 if Early stopping condition is TRUE then
12 Break
13 end
14 end
15 end

/* stage 2: joint training */
16 Unfreeze the norm layers in fvis(·)
17 for i← 1 to MaxEpoch do
18 for (X,Y) in Dataloader(Dtrain) do

/* Repeat lines 5-9 */
19 Update model parameters of fnum(·), norm layers in fvis(·), and parameter g
20 if Early stopping condition is TRUE then
21 Break
22 end
23 end
24 end
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B Implementation Details

B.1 Pre-trained LVM Checkpoints

As described in §3.3, fvis(·) uses pre-trained LVMs. For MAE, we use the checkpoint released by
Meta Research 1, which was pretrained on 224× 224× 3 sized images from ImageNet-1K [5] with
ViT-Base Backbone. For SimMIM, we adopt the checkpoint released by Microsoft2, which has the
same pretraining setting as aforementioned for MAE. For these two LVM backbones, the base versions
are adopted to balance the performance and computational costs.

B.2 Training Details

For training the proposed DMMV-S and DMMV-A models, we adopt AdamW optimizer throughout
the experiments. The batch size is set to 64 for the ETT datasets and Illness dataset, and set to 8 for
the other three datasets to balance training stability and memory consumption.

For both DMMV-S and DMMV-A, we propose a two-stage training scheme to facilitate effective
integration of numerical and visual features:

• Stage 1 (Numerical forecaster training). In this stage, we freeze all parameters of fvis(·) and
train fnum(·) only. This warm-up step prevents fvis(·) from updating with unstable gradients
caused by the random representations from the under-trained fnum(·). In this stage, the
learning rate is set to 0.01. The training runs up to a maximum of 50 epochs on the training
set. Early stopping is applied with a patience of 10 epochs.

• Stage 2 (Joint training). In this stage, we unfreeze the layer normalization parameter in
fvis(·) and jointly train them with fnum(·) to enable deep fusion of visual and numerical
views. The learning rate is reduced to 0.005 to preserve learned features and stabilize
training. The training at this stage runs up to 5 epochs. Early stopping is applied with a
patience of 2 epochs.

The detailed training algorithm of DMMV-A is summarized in Algorithm 1.

B.3 Running Environment

The experiments are conducted on a Linux server (kernel 5.15.0-139) with 8x NVIDIA RTX 6000
Ada GPUs (48 GB each). The environment uses Python 3.12.8, PyTorch 2.5.1 with CUDA 12.4 and
cuDNN 9.1. The key libraries include NumPy 2.1.3, Pandas 2.2.3, Matplotlib 3.10.0, SciPy 1.15.1,
scikit-learn 1.6.1, and torchvision 0.20.1.

1https://github.com/facebookresearch/mae
2https://github.com/microsoft/SimMIM
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C More Experimental Results

C.1 Comparison with All Baselines

Table 4 provides the full results of comparing DMMV-A and DMMV-S with all of the 14 baseline
methods, which complements Table 1 in the paper. In Table 4, Time-VLM’s results on Illness dataset
is marked by “–” since its paper doesn’t report the results and its code is not publicly available at the
time of this experiment. CycleNet’s paper doesn’t report its results on Illness dataset, so we run its
code and reproduce its results on Illness dataset in Table 4.

From Table 4, we can observe that DMMV-A maintains a clear advantage when compared against
all of the baseline methods. It achieves 41 first-place results, significantly surpassing the second-
best method. Additionally, taking a closer look at all compared methods, MMV-based methods
LVM-based methods, and decomposition-based methods demonstrate superiority over other baseline
methods. This suggests the synergy of MMV framework, LVMs, and decomposition strategy, which
are explored by the proposed DMMV model.
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Table 5: Forecasting performance of an LVM w.r.t. varying segment length on a synthetic dataset.
The function of the synthetic time series is x(t) = A(t) · sin

(
2πt
P

)
, where the period P = 24 and the

amplitude function A(t) decreases linearly over time.

Segment Length 16 20 24 28 32 36 40 44 48
MSE 0.043 0.099 0.001 0.147 0.154 0.143 0.221 0.114 0.002
MAE 0.177 0.257 0.024 0.342 0.347 0.315 0.408 0.289 0.045

1/6P 2/6P 3/6P 4/6P 5/6P 6/6P
Segment Length

0.40

0.50

M
SE

ETTh1

1/6P 2/6P 3/6P 4/6P 5/6P 6/6P
Segment Length

0.34

0.36

0.38

0.40
ETTm1

1/6P 2/6P 3/6P 4/6P 5/6P 6/6P
Segment Length

0.22

0.23

0.23

0.23
Weather

1/6P 2/6P 3/6P 4/6P 5/6P 6/6P
Segment Length

1.40

1.50

1.60

Illness
VisionTS DMMV-A

Figure 10: MSE Performance of DMMV-A and VisionTS w.r.t. varying segment length that is used
in image construction. The x-axis indicates the segment length varies from 1

6 period to 6
6 period.

C.2 Further Analysis of The Inductive Bias

A contribution of our work lies in the in-depth analysis of an inductive bias of the current best LVM
forecasters. In §3, we have discussed the impact of the alignment of the segment length and the period
of time series on model performance. We find that the LVM exhibits a strong inter-period consistency
when applied to synthetic data. The function of the synthetic time series is x(t) = A(t) · sin

(
2πt
P

)
,

where the period P is set to 24 and the amplitude function A(t) decreases linearly over time. The
forecasts are more accurate when the segment length is a multiple of the period (e.g., 24, 48) than
other values. This section provides detailed quantitative results on the synthetic data in Table 5. From
Table 5, the fluctuations in MSEs and MAEs across different segment lengths other than 24 and 48
support the findings of the inductive bias toward “forecasting periods”.

In addition, we evaluate the performance of the proposed method DMMV-A and VisionTS w.r.t.
varying segment lengths to compare their robustness to the change of segment length. Fig. 10
summarizes the results in terms of MSE on four benchmark datsets, where the segment length varies
from P

6 to 6P
6 and P is a period of the input time series. From Fig. 10, we have several observations.

First, DMMV-A consistently outperforms VisionTS, validating the effectiveness of the proposed
MMV framework. Second, in contrast to VisionTS, DMMV-A exhibits a better robustness to the
change of segment length on ETTh1 and Weather datasets, but has a similar sensitivity to the change
of segment length as VisionTS on ETTm1 and Illness datasets. This implies that by incorporating
fnum(·), DMMV-A can alleviate fvis(·)’s sensitivity to the inductive bias to some extent. However, the
current DMMV-A does not fully mitigate this limitation. It may be caused by the higher weights that
are automatically allocated to fvis(·) than fnum(·) by the gate fusion mechanism (Fig. 6), which could
make the model prone to inherit the behavior of the LVM used in fvis(·) to some extent, including
its sensitivity to segment length, but with a less extent than a sole LVM. As such, a future work to
improve DMMV is to reduce such sensitivity to an unnoticeable effect.

C.3 Ablation Study

In Table 2 (§4.2), we provide ablation analyses for DMMV-A. Table 6 provides the ablation analysis
for DMMV-S, where MSE and MAE are averaged over different prediction lengths. In addition,
Tables 7 (Table 8) includes the full results for Table 2 (Table 6) with all prediction lengths.

In Table 6, from (a), replacing the linear numerical forecaster with PatchTST can slightly improve the
performance of DMMV-S, likely because DMMV-S relies more on the predictions from the numerical
view than visual view (Fig. 6). Therefore, in this case, increasing the complexity of the numerical
model can improve the ability of fnum(·) and finally improve the overall performance. From (b),
replacing MAE with SimMiM reduces the overall performance, this is the same as the findings in
Table 2 for DMMV-A. From (c), gate-based fusion outperforms simple summation for DMMV-S,
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Table 6: Ablation analysis of DMMV-S. MSE and MAE are averaged over different prediction lengths.
Lower MSE and MAE are better. “Improvement” of each ablation is relative to DMMV-S.

Dataset (→) ETTh1 ETTm1 Illness Weather
Method (↓), Metric (→) MSE MAE MSE MAE MSE MAE MSE MAE

DMMV-S 0.405 0.426 0.349 0.382 1.520 0.813 0.244 0.281
(a) fnum(·) → Transformer 0.402 0.423 0.342 0.376 1.544 0.841 0.229 0.264

Improvement 0.74% 0.47% 2.01% 1.31% -1.65% -3.44% 6.15% 6.41%
(b) fvis(·) → SimMIM 0.415 0.423 0.355 0.382 1.810 0.875 0.233 0.272

Improvement -2.47% 0.47% -1.72% 0.00% -19.16% -7.63% 4.92% 3.20%
(c) Gate → Sum 0.419 0.435 0.355 0.379 1.453 0.790 0.256 0.297

Improvement -3.46% -2.24% -2.01% 0.52% 4.34% 2.95% -4.51% -5.69%
(d) Freeze fvis(·) 0.436 0.442 0.368 0.386 2.125 0.969 0.251 0.288

Improvement -7.41% -3.76% -5.75% -1.05% -39.83% -19.07% -2.46% -2.14%

Table 7: Full results of the ablation analysis of DMMV-A. Lower MSE and MAE are better. The
Illness dataset uses prediction lengths of {24, 36, 48, 60} due to its short time series (in total 966 time
steps), which is different from the prediction lengths of other datasets.

Dataset(→) ETTh1 ETTm1 Illness Weather
Method(↓), Metric(→) Length MSE MAE MSE MAE MSE MAE MSE MAE

DMMV-A

96 0.354 0.389 0.279 0.329 1.409 0.754 0.143 0.195
192 0.393 0.405 0.317 0.357 1.290 0.745 0.187 0.242
336 0.387 0.413 0.351 0.381 1.499 0.810 0.237 0.273
720 0.445 0.450 0.411 0.415 1.428 0.773 0.302 0.315
Avg. 0.395 0.414 0.340 0.371 1.407 0.771 0.217 0.256

(a) fnum(·) → Transformer

96 0.357 0.389 0.279 0.329 1.604 0.823 0.145 0.193
192 0.407 0.420 0.318 0.359 1.250 0.742 0.187 0.239
336 0.389 0.411 0.352 0.382 1.555 0.803 0.241 0.283
720 0.474 0.462 0.407 0.416 1.359 0.774 0.301 0.326
Avg. 0.407 0.421 0.339 0.372 1.442 0.786 0.219 0.260

(b) fvis(·) → SimMiM

96 0.358 0.383 0.301 0.348 1.729 0.832 0.145 0.194
192 0.405 0.41 0.325 0.363 1.643 0.734 0.192 0.242
336 0.412 0.414 0.354 0.383 1.689 0.845 0.241 0.275
720 0.453 0.452 0.398 0.412 1.534 0.845 0.328 0.332
Avg. 0.407 0.415 0.345 0.377 1.649 0.814 0.227 0.261

(c) Gate → Sum

96 0.373 0.400 0.286 0.339 1.728 0.845 0.156 0.214
192 0.414 0.424 0.329 0.369 1.423 0.795 0.204 0.261
336 0.411 0.422 0.364 0.392 1.693 0.920 0.258 0.302
720 0.457 0.461 0.427 0.430 1.580 0.890 0.315 0.335
Avg. 0.414 0.427 0.352 0.383 1.606 0.863 0.233 0.278

(d)BCMASK→ No mask

96 0.384 0.402 0.288 0.342 1.628 0.840 0.145 0.198
192 0.413 0.440 0.325 0.363 1.325 0.796 0.191 0.244
336 0.434 0.448 0.361 0.384 1.606 0.865 0.241 0.285
720 0.474 0.473 0.421 0.419 1.414 0.811 0.308 0.340
Avg. 0.426 0.441 0.349 0.377 1.493 0.828 0.221 0.267

(e)BCMASK→ Random mask

96 0.348 0.384 0.279 0.329 1.618 0.859 0.146 0.197
192 0.388 0.405 0.318 0.360 1.318 0.798 0.189 0.240
336 0.383 0.404 0.350 0.381 1.560 0.858 0.243 0.282
720 0.458 0.462 0.414 0.418 1.392 0.800 0.312 0.328
Avg. 0.394 0.414 0.340 0.372 1.472 0.829 0.223 0.262

(f) Freeze fvis(·)

96 0.389 0.402 0.293 0.342 1.482 0.761 0.161 0.224
192 0.434 0.425 0.335 0.367 1.218 0.694 0.203 0.287
336 0.431 0.428 0.372 0.389 1.58 0.82 0.285 0.302
720 0.468 0.457 0.431 0.422 1.489 0.815 0.335 0.338
Avg. 0.431 0.428 0.358 0.380 1.442 0.773 0.246 0.288

(g) W/o decomposition

96 0.352 0.387 0.274 0.329 1.728 0.938 0.143 0.195
192 0.402 0.414 0.315 0.358 1.841 0.940 0.187 0.242
336 0.391 0.410 0.347 0.382 1.672 0.886 0.237 0.284
720 0.487 0.486 0.417 0.422 1.606 0.846 0.309 0.350
Avg. 0.408 0.424 0.338 0.373 1.712 0.903 0.219 0.268

highlighting the effectiveness of gate fusion. From (d), fine-tuning the norm layers of fvis(·) improves
the performance for DMMV-S, suggesting the used fine-tuning strategy.
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Table 8: Full results of the ablation analysis of DMMV-S. Lower MSE and MAE are better. The
Illness dataset uses prediction lengths of {24, 36, 48, 60} due to its short time series (in total 966 time
steps), which is different from the prediction lengths of other datasets.

Dataset(→) ETTh1 ETTm1 Illness Weather
Method(↓), Metric(→) Length MSE MAE MSE MAE MSE MAE MSE MAE

DMMV-S

96 0.350 0.388 0.296 0.349 1.638 0.838 0.168 0.218
192 0.399 0.420 0.328 0.370 1.323 0.753 0.220 0.259
336 0.399 0.415 0.369 0.393 1.644 0.851 0.267 0.304
720 0.472 0.479 0.401 0.414 1.473 0.810 0.322 0.343
Avg. 0.405 0.426 0.349 0.382 1.520 0.813 0.244 0.281

(a) fnum(·) → Transformer

96 0.352 0.387 0.286 0.339 1.613 0.829 0.148 0.194
192 0.401 0.420 0.325 0.364 1.417 0.825 0.193 0.240
336 0.395 0.415 0.354 0.387 1.610 0.853 0.246 0.280
720 0.460 0.471 0.401 0.414 1.536 0.858 0.330 0.341
Avg. 0.402 0.423 0.342 0.376 1.544 0.841 0.229 0.264

(b) fvis(·) → SimMiM

96 0.366 0.391 0.323 0.360 1.923 0.901 0.153 0.210
192 0.412 0.420 0.331 0.364 1.812 0.863 0.194 0.248
336 0.419 0.420 0.361 0.386 1.793 0.854 0.245 0.279
720 0.464 0.461 0.404 0.416 1.712 0.883 0.339 0.352
Avg. 0.415 0.423 0.355 0.382 1.810 0.875 0.233 0.272

(c) Gate → Sum

96 0.356 0.389 0.300 0.346 1.503 0.763 0.183 0.234
192 0.403 0.417 0.334 0.365 1.350 0.746 0.236 0.277
336 0.414 0.426 0.362 0.385 1.530 0.820 0.271 0.308
720 0.504 0.506 0.424 0.420 1.429 0.830 0.333 0.369
Avg. 0.419 0.435 0.355 0.379 1.453 0.790 0.256 0.297

(d) Freeze fvis(·)

96 0.386 0.404 0.306 0.352 1.966 0.921 0.156 0.225
192 0.436 0.434 0.347 0.375 2.050 0.945 0.240 0.261
336 0.436 0.440 0.377 0.392 2.223 0.999 0.271 0.312
720 0.484 0.488 0.443 0.424 2.259 1.009 0.335 0.353
Avg. 0.436 0.442 0.368 0.386 2.125 0.969 0.251 0.288

C.4 Additional Visualizations on Decomposition

Fig. 11 and Fig. 12 several more examples the decomposed time series of DMMV-S and DMMV-A.
Fig. 11 illustrates a case where the series has a localized periodic anomaly at time step around
192, which poses a challenge for detecting periodic patterns. In this case, DMMV-A effectively
suppresses the influence of the anomaly and extracts a clear periodic pattern from the time series
series. In contrast, DMMV-S is affected by the anomaly and fails to capture a smooth periodic
pattern. Fig. 12 is an example with weak periodicity, where the periodic signal is either faint or
overwhelmed by trend. In this case, DMMV-A is able to extract and utilize the underlying periodicity
to produce reasonable forecasts, which is better than DMMV-S, suggesting the importance of the
proposed adaptive decomposition method. In summary, the results demonstrate that DMMV-A has a
strong modeling ability of temporal structures and robustness to fluctuations even when dealing with
anomalous or weakly periodic time series, validating its reliability and applicability across a broad
range of scenarios.
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(a) DMMV-S Forecast

(d) DMMV-A Forecast

(b) DMMV-S Seasonal (c) DMMV-S Trend

(e) DMMV-A Seasonal (f) DMMV-A Trend

Look-back window Forecast Ground truth

Figure 11: The decompositions of DMMV-S and DMMV-A on the same example in ETTh1: (a)(d)
input time series and forecasts, (b)(e) seasonal component, and (c)(f) trend component.

(a) DMMV-S Forecast

(d) DMMV-A Forecast

(b) DMMV-S Seasonal (c) DMMV-S Trend

(e) DMMV-A Seasonal (f) DMMV-A Trend

Look-back window Forecast Ground truth

Figure 12: The decompositions of DMMV-S and DMMV-A on the same example in ETTh2: (a)(d)
input time series and forecasts, (b)(e) seasonal component, and (c)(f) trend component.

(a) Input Image (b) Input Look-Back Window (c) No Mask Image (d) No Mask Backcast

(e) Rand. Mask Image (f) Rand. Mask Backcast (g) BCMask Image (h) BCMask Backcast

Figure 13: Comparison of different masking methods on the same example in ETTh1. (a) image of
input look-back window; (c)(e)(g) are images of backcast output by DMMV-A: (c) uses “No mask”;
(e) uses “Random mask”; (g) uses BCMASK. (b)(d)(f)(h) are their recovered time series, respectively.

(a) Input Image (b) Input Look-Back Window (c) No Mask Image (d) No Mask Backcast

(e) Rand. Mask Image (f) Rand. Mask Backcast (g) BCMask Image (h) BCMask Backcast

Figure 14: Comparison of different masking methods on the same example in ETTh2. (a) image of
input look-back window; (c)(e)(g) are images of backcast output by DMMV-A: (c) uses “No mask”;
(e) uses “Random mask”; (g) uses BCMASK. (b)(d)(f)(h) are their recovered time series, respectively.
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Figure 15: Average MSE comparison with varying look-back window (or context) lengths.

Table 9: Standard Deviations of DMMV-S and DMMV-A in terms of MSE and MAE on four LTSF
benchmark datasets.

Model DMMV-A DMMV-S

Metric MSE MAE MSE MAE

E
T

T
h1 96 0.354± 0.001 0.390± 0.001 0.350 ± 0.001 0.388 ± 0.002

192 0.393± 0.001 0.405± 0.001 0.399 ± 0.002 0.420 ± 0.001
336 0.387± 0.001 0.413± 0.001 0.401 ± 0.002 0.415 ± 0.001
720 0.447± 0.002 0.451± 0.001 0.472 ± 0.001 0.480 ± 0.002

E
T

T
m

1 96 0.278± 0.001 0.329± 0.000 0.296 ± 0.001 0.348 ± 0.002
192 0.317± 0.001 0.358± 0.001 0.328 ± 0.001 0.368 ± 0.002
336 0.351± 0.001 0.381± 0.000 0.367 ± 0.002 0.393 ± 0.002
720 0.411± 0.000 0.415± 0.000 0.401 ± 0.002 0.415 ± 0.003

Il
ln

es
s 24 1.409± 0.001 0.754± 0.001 1.638 ± 0.003 0.842 ± 0.005

36 1.291± 0.002 0.742± 0.003 1.329 ± 0.012 0.751 ± 0.002
48 1.499± 0.002 0.810± 0.011 1.643 ± 0.002 0.853 ± 0.005
60 1.430± 0.003 0.774± 0.001 1.473 ± 0.002 0.810 ± 0.002

W
ea

th
er 96 0.143± 0.001 0.196± 0.002 0.168 ± 0.001 0.218 ± 0.002

192 0.187± 0.001 0.245± 0.003 0.221 ± 0.002 0.259 ± 0.002
336 0.237± 0.001 0.272± 0.003 0.267 ± 0.002 0.305 ± 0.001
720 0.300± 0.002 0.318± 0.003 0.323 ± 0.001 0.341 ± 0.003

C.5 Additional Visualizations on Masking Strategies

Fig. 13 and Fig. 14 present additional examples of BCMASK in DMMV-A. Similar to §4.3, Fig. 13 and
Fig. 14 compare different masking methods. From both figures, we observe that BCMASK produces
smooth patterns along the temporal (x-axis) dimension, effectively capturing periodic structures.
Notably, when the input time series contains an anomaly (e.g., Fig. 13, time steps 288-336), BCMASK
can effectively extract the periodic patterns.

C.6 Impact of Look-Back Window

Fig. 15 provides the MSE results that compare DMMV-A with the other three models. Fig. 15
demonstrate a similar trend as that of the MAE results in Fig. 9.

C.7 Standard Deviations

To assess the uncertainty and stability of the forecasting performance, we report the standard devi-
ations of DMMV-S and DMMV-A on the four benchmark datasets used in §4.2 and §4.3 in Table 9.
From Table 9, the relative standard deviations of the proposed models, which are calculated as
the ratio between standard deviation and mean, are all below 1.30% across different datasets and
evaluation metrics, demonstrating their stability and robustness over different runs.
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