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Abstract

Time series Al is crucial for analyzing dynamic web content, driving
a surge of pre-trained large models known for their strong knowl-
edge encoding and transfer capabilities across diverse tasks. How-
ever, given their energy-intensive training, inference, and hardware
demands, using large models as a one-fits-all solution raises serious
concerns about carbon footprint and sustainability. For a specific
task, a compact yet specialized, high-performing model may be
more practical and affordable, especially for resource-constrained
users such as small businesses. This motivates the question: Can we
build cost-effective lightweight models with large-model-like per-
formance on core tasks such as forecasting? This paper addresses
this question by introducing SVTIME, a novel Small model inspired
by large Vision model (LVM) forecasters for long-term Time series
forecasting (LTSF). Recently, LVMs have been shown as powerful
tools for LTSF. We identify a set of key inductive biases of LVM
forecasters — analogous to the “physics” governing their behav-
iors in LTSF — and design small models that encode these biases
through meticulously crafted linear layers and constraint functions.
Across 21 baselines spanning lightweight, complex, and pre-trained
large models on 8 benchmark datasets, SVTIME outperforms state-
of-the-art (SOTA) lightweight models and rivals large models with
10®x fewer parameters than LVMs, while enabling efficient training
and inference in low-resource settings.
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1 Introduction

The World Wide Web is a dynamic, ever-evolving system that
continuously produce time series data pertaining to web traffic
(e.g., page views), user behavior (e.g., bounce rates), web content
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(e.g., trending topics), e-commerce (e.g., click-through rates), system
security (e.g., latency logs), and so on, where the ability to anticipate
and respond to changing patterns and user behaviors plays a crucial
role. As such, time series forecasting — analyzing historical data and
predicting future trends — emerges as an indispensible component
of modern web technologies [15, 17, 19, 22, 46], driving intelligent
web services such as content recommendation [42], microservice
monitoring [20], and web economics modeling [46].

Inspired by the success of large models in Al and their strong
adaptability across modalities, emergent methods for time series
forecasting have explored Transformer [29, 32, 45, 53, 54], Time
Series Foundation Models (TSFMs) [1, 6, 9, 41, 43], Large Lan-
guage Models (LLMs) [21, 27, 33, 55], Large Vision Models (LVMs)
[4, 34, 36] and Vision-Language Models (VLMs) [52]. However,
given their energy-intensive training, inference, and hardware de-
mands, using large models as a one-fits-all solution raises serious
concerns about carbon footprint and sustainability [3]. For a specific
task, recent findings reveal that most of a large model’s parameters
may be useless [30]. In language domain, small language models
(SLMs) such as Microsoft Phi series [16], NVIDIA Hymba [7], and
DeepSeek-R1-Distill series [11] are becoming on par with LLMs
on certain tasks, powering economical development of agent sys-
tems [2]. The trend toward compact yet high-performing models
specialized in core tasks, along with the need for quick deploy-
ment in resource-constrained scenarios (e.g., edge devices, small
institutes and businesses), motivate the question: Can we build
cost-effective models with large-model-like performance on core
tasks such as long-term time series forecasting (LTSF)?

This question is challenging due to the trade-off between model
capacity and efficiency. Large models — e.g., with millions or bil-
lions of parameters — support complex attention mechanisms, and
encoding of knowledge by large-scale pre-training. In contrast,
smaller models are restricted in design possibilities and unfit to
pre-training because of underfitting, thus appear to be less likely to
rival (pre-trained) large models. A straightforward direction is to ex-
plore knowledge-distillation (KD), such as distilling OccamVTS from
LVMs [30] and TimeDistill from Transformers [31]. Whereas, KD
is still resource-demanding as it relies on the large teacher models,
which will be loaded and communicated with during the training
of student models. Also, these student models are non-competitive
in reducing parameters as evaluated in §4.4.

Recent efforts toward small models for LTSF focus on exploring
different hypotheses pertaining to the LTSF task, such as point-
wise correlation [50], segment-wise correlation [38], periodicity
[24, 25], and time-frequency relationships [47, 50], while designing
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Figure 1: An overview of (a) forecasting performance vs. inference time on ETTm1 dataset, where circle size reflects model size,
which is a zoom-in of the small models in (b); in (b), TimeLLM [21] is ignored for its much larger size and longer inference time
(see §4.2); and (c) is a categorization of small, complex, and pre-trained large models.

models with inductive biases encoding the hypotheses. For example,
SparseTSF [25] assumes inter-period smoothness of time series and
forecasts future periods by aggregating past periods. CycleNet [24]
also utilizes periods but makes them learnable in a seasonal-trend-
like framework. CMoS [38] extends DLinear [50] and assumes the
correlation between historical chunks (i.e., a segment of time series)
and future chunks can be modeled by linear layers. However, as
the hypotheses don’t align with large models, none of these models
is comparable to pre-trained large models (as evaluated in §4).

In this paper, in addition to centering on the LTSF task itself,
we take a new perspective by grounding our hypotheses on the
behavior of large models. We analyze a specific LVM, MAE [13] —
when used as a forecaster in VisionTS [4] — for its superior per-
formance in LTSF over LLMs and VLMs as validated by [35, 51].
Our analysis uncovers a set of key inductive biases — analogous
to the “physics” governing MAE’s behavior in LTSF — including
(1) inter-period consistency (§3.1); (2) patch-wise variety (§3.2);
and (3) distance-attenuating local attention (§3.3). We design light-
weight models with linear layers and constraint functions to encode
these biases, sharing similar merits with physics-informed learning
[14, 18], which is useful in learning cost-effective models. Using
the first two “physics”, we propose SVTIME, a novel Small model
inspired by LVM for long-term Time series forecasting. Including
the third “physics” leads to a tiny version of the model, namely
SVTIME-t. Moreover, to complement the biases toward forecast-
ing periods, we encapsulate our models within a backcast-residual
based decomposition framework (§3.4), which adaptively compen-
sates forecasts with residual trends. As Fig. 1(a)(b) illustrate, with
only 0.2% (0.1%) size of VisionTS, SVTIME (SVTIME-t) shows su-
periority in the small model regime and rivals pre-trained large
models including LLMs, LVMs, TSFMs and VLMs. To sum up, our
contributions are as follows.

e Discovery. We dive in to the behavioral patterns of a SOTA
LVM forecaster, uncover key inductive biases, and validate their
value by explicitly transferring them to a much simpler model.

e Development. We carefully design lightweight models using
linear layers and constraint functions to reproduce the “physics”
of an LVM forecaster within a parameter-limited regime.

e Evaluation. We compare SVTIME(-t) with 21 SOTA baselines
covering lightweight, complex, and pre-trained large models on

8 benchmark datasets, along with extensive ablations, validating
their small-model-like sizes and large-model-like performance.

Categorization of Models. In this paper, we categorize models as
lightweight, complex, and pre-trained large models according to our
observation of the 21 SOTA models as shown in Fig. 1(c). DLinear
is used to separate lightweight and complex models as the smaller
models mostly consist of linear layers, while the larger models
employ CNN, MLP, or Transformer with more complex designs.
Pre-trained large models only include models that have been pre-
trained on some datasets. However, this categorization is subject to
discussion and has little bearing on the essence of the paper.

2 Related Work

To the best of our knowledge, this is the first work to explore LVMs’
inductive biases for guiding the design of lightweight forecasting
models. Our work relates to Large Models for time series fore-
casting (TSF), Lightweight models for TSF, and Knowledge-
Distillation (KD)-based TSF, which are discussed below.

Large Models for TSF. Recent research on TSF draws a lot of
attention to Transformer [29, 32, 45, 53, 54], TSFMs [1, 6, 9, 41, 43],
LLMs [21, 27, 33, 55], LVMs [4, 34, 36], and multimodal models [35,
52]. Early Transformer-based forecasters, such as Informer [53]
and Autoformer [45], focus on encoding time points. More recent
models tend to encode patches, e.g., PatchTST [32], or variates, e.g.,
iTransformer [29]. This development inspires pre-training TSFMs
on large-scale time serie datasets such as TimesFM [6], Chronos [1],
Moirai [43], and LightGTS [41]. The adaptation of LLMs to time
series include prompt-based methods, such as PromptCast [48]
and LLMTime [10], and embedding-based methods, such as GPT4TS
[55], TimeLLM [21], and CALF [27]. More recently, LVMs such as MAE
[12] have been found more effective than LLMs by VisionTS [4],
VisionTS++ [36], and the study in [34, 51], which further inspires
multimodal models for TSF such as TimeVLM [52] and DMMV [35]. In
this work, we also include some CNN-based and MLP-based models
as large models for their relatively complex designs, such as SCINet
[26], TimesNet [44], and TimeMixer [40]. Despite their powerful
performance, these large models are resource-demanding and may
not fit resource-constrained scenarios.
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Lightweight models for TSF. The SOTA lightweight TSF mod-
els mostly employ simple linear layers [23-25, 38, 47, 49, 50]. The
rationale behind their effectiveness lies in the designs for explor-
ing certain inductive biases pertaining to the TSF task. For ex-
ample, DLinear [50] assumes linear mapping between lookback
window and forecasts; CMoS [38] assumes linear correlation be-
tween historical chunks and future chunks; SparseTSF [25] and
CycleNet [24] capitalize periodical patterns in TSF; while FITS
[47] and FilterNet [49] take the advantage of frequency domain
for efficient modeling of temporal trends. Despite the inspiring
progress, none of these models can rival the SOTA performance of
large models (Fig. 1) due to their non-large-model-aligned designs.
In contrast, we are exploring the possibility of developing small
models with large-model-like performance.

KD-based TSF. A straightforward way toward small models with
large-model-like performance is KD. OccamVTS [30] is a recent cross-
modal KD method that transfers TSF-essential knowledge from a
pre-trained LVM teacher model to a smaller Transformer-based
student model. However, as we evaluated in §4.4, 0ccamVTS’s size
still belongs to complex models. TimeDistill [31] supports cross-
architecture KD, thus is more flexible in compressing student model
size than OccamVTS. However, KD may not fit resource-constrained
needs because (1) it relies on the availability (and fine-tuning) of
large teacher models; (2) its training of student models involves
communication with large teacher models, leading to high costs;
and (3) the student model may need to be above certain size for
sufficient capacity in encoding of teacher models’ knowledge. As
such, a standalone lightweight model may be more favorable.

3 The Proposed SVTiME Model

Problem Statement. Given a multivariate time series (MTS) X =
[x, ..., XD]T € RP*T within a look-back window of length T, where
x' € RT (1 < i < D) is a univariate time series (UTS) of the i-th
variate, the goal of LTSF is to estimate the most likely values of the
MTS at future H time steps, i.e., Y € RPXH gych that the difference
between the estimation and the ground truth Y = Xri1r4m €
RP*H ig minimized in terms of mean squared error (MSE), i.e.,
ﬁ Z?:l fil ¥ - Y;:||2 is minimized.

In the following, we introduce the key inductive biases (IBs)
identified from LVM’s forecasting behaviors, including (IB1) inter-
period consistency (§3.1); (IB2) patch-wise variety (§3.2); and (IB3)
distance-attenuating local attention (§3.3), meanwhile reprogram-
ming them using linear layers and constraint functions, progres-
sively constructing SVTIME(-t) models. Finally, we encapsulate
our models within a lightweight backcast-residual decomposition
framework for avoiding overly dominant bias toward periods (§3.4).
Fig. 5 illustrates the overall framework of SVTIME(-t).

3.1 IB1:Inter-Period Consistency

Masked autoencoder (MAE) [12] is pre-trained self-supervisedly
by reconstructing masked image patches using ImageNet dataset.
To adapt it to LTSF, VisionTS [4] adopts a period-based imaging
technique introduced by TimesNet [44]. Specifically, each length-T
UTS x! is segmented into | T/P| subsequences of length P, where
P is set to be the period of x!, which can be obtained using Fast
Fourier Transform (FFT) on x’ [44] or from prior knowledge on
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Figure 2: An illustration of inter-period consistency.

sampling frequency. The subsequences are stacked to form a 2D
image I! € RPXLT/P_ After standard-deviation normalization, I is
duplicated 3 times to form an image of size PX | T /P|x3, followed by
a bilinear interpolation to resize it to an image I' of size 224 X 224 x 3
to fit the input requirement of MAE.

As Fig. 2 shows, the forecast is achieved by reconstructing a
right-appended masked area of I, which corresponds to the future
horizon of x’. The forecast y* € RF can be recovered from the
reconstructed area by de-normalization and reverse transformation.
The forecast of MTS X is achieved by forecasting over x!, ., xPin
parallel, following the channel-independence assumption [32].

Due to the period-based imaging and the spatial consistency
enforced during MAE’s pixel inference, VitionTS exhibits a strong
bias toward inter-period consistency — smoothness of values
over the same within-period time point (i.e., rows) across periods
(i.e., columns) in the image, as revealed by [35, 51].

3.1.1  IB1-Informed Model Design. By designing a new small model,
we don’t need to perform bilinear interpolation and channel du-
plication. Instead, we use the 2D image I € RP*LT/P] 35 the input
(i.e. the imaged look-back window) for the i-the variate, and output
il € RPXLH/P] 45 the forecasts for H time steps, where the j-th
column ij. € RP (1 < j < |H/P]) is the j-th forecasted period. !
corresponds to the masked area in Fig. 2.

To harness inter-period consistency, let N = |T/P] and M =
|H/P|. For each column i;, we introduce a set of weights w; =
[wj1, wja, ..., w;jn] and predict iﬁ. as a linear combination of the his-
torical periods in I, i.e., i; = IiWJT. Let W = [w],...,w; ] € RNXM,
the forecast of M periods is I! = 'W € RP*M_ It is noteworthy that
W is shared across variates. Then the forecasted time series §* € RF
can be recovered from I’ in a similar way as aforementioned, and
multiple variates for 1 < i < D in X can be forecasted in parallel
according to the channel-independence assumption [32].

3.2 1B2: Patch-Wise Variety
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Figure 3: An illustration of patch-wise variety.

As Fig. 3 illustrates, using ViT backbone [8], MAE divides an in-
put image into a fixed number of patches, and encodes them for
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reconstructing the patches in the masked area. This mechanism en-
ables patch-wise variety — each row of patches in the image may
have its row-specific inter-period consistency, while the degree of
consistency may vary across different rows of patches.

3.2.1 IB2-Informed Model Design. To harness IB2, we divide each
period in the historical image I’ into K patches, each is of length-
|P/K] (additional time points will be allocated to the last patch),
as illustrated in Fig. 3 (where K = 7). Then the forecasting of I’ will
be performed in patch-wise.

Let the k-th row of the patches in I as I;;,* € RIP/KIXN ‘and let
the k-th patch in the j-th column of I as i;-w' eRWPKI(j=1,23in
Fig. 3), we introduce weights Wy ; = [wij1, ..., Wk j ] and predict
i;c,j as a linear combination of the historical patches in I o ie.,
i;{] = I;{’*Wz’j. Let Wy = [W]Il, ...,WZ’M] € RVM the forecast
of the k-th patches for all of the M future periods becomes i;c* =
IL,*Wk € RP/KIXM Forecasting i;” for 1 < k < K in parallel
accomplishes the forecasting of I/, from which we can recover the
forecasted time series ¥ € R as before.

Comparing with the model in §3.1.1, the model in this section
extends a single W to Wy, ..., Wk for fine-grained forecasting. As
we evaluated in the ablation §4.3, this extension brings substantial
performance improvement.

Remark. Our notion of “patch” refers specifically to within-period
patches, and is used for inter-period consistency. It is different from
the “patch” used in existing methods such as PatchTST [32], where
a patch is a segment selected without using period.

3.3 1IB3: Distance-Attenuating Local Attention

(a) LVM’s Attention to historical patches for (b) Our Annealing Function
15t Future Column Last Future Column
"N High 110

sl
||
n

Temporally ordered historical periods

Figure 4: An illustration of (a) distance-attenuating local
attention; and (b) our annealing constraint function.

We also investigate the attention scores of MAE when forecasting
different future periods (i.e., different columns in the masked area
of Fig 2). Fig. 4(a) shows the attention scores to the history for the
first and last columns in the masked area. As can be seen, when
forecasting the first period, the model focuses on the last several
periods in the history, which are nearby to it. This local attention,
however, attenuates when forecasting the last, distant period, where
the model attention becomes more uniform across the entire history.
This distance-attenuating local attention is reasonable since
short-term forecasts may rely more on local patterns while long-
term forecasts may depend on global patterns.

3.3.1 IB3-Informed Model Design. To encode this IB in our model,
we propose to replace the weights W1, ..., Wk by a novel annealing

constraint function powered weighting mechanism. For the j-th
period in the forecast If, the constraint function should generate
weights wj 1, ..., wjn such that (1) when j is small (e.g., close to
1), the weights focus on local areas, i.e., weights close to w; x are
remarkably larger than those close to wj1; and (2) when j is large
(e.g., close to M), the weights tend to be uniform, i.e., the differences
of weights between w;j ; and w; n is small. To this end, we propose
the following annealing function w(j, n):
w(j.n)

w(j,n) = —
1,:7:1 w(j,n

, with w(j, n) = exp (M) (1)

1+4-(-1)
where the numerator of w(j,n) ensures w(j, N) is larger than
w(Jj, 1) for a fixed j (i.e, local attention). « is a parameter to scale
the difference when n changes. The denominator of w(j, n) smooths
the weights when j is large. f is a parameter to control the degree of
smoothness. exp(-) ensures positive weights and the normalization
in w(j, n) makes the weights sum up to 1.

Fig. 4(b) shows the synergy between the numerator and denomi-
nator in Eq. (1), where short-term future periods have larger weights
on nearby historical periods (N=20), while long-term future periods
have more uniform weights, satisfying our design criteria.

Moreover, instead of manually tuning « and f as hyperparam-
eters in Eq. (1), we introduce linear layers to learn each of them
from the input time series x* € RT automatically:

a' = SoftPlus((w*) Tx' + b%), B = SoftPlus((w#)Tx' + b%) (2)

where w%, w# € RT, b* and bP are parameters of the two linear lay-
ers. SoftPlus(-) is applied to avoid negative scaling. Eq. (2) enables
different a’’s (8"’s) for different variates x’ (1 < i < D).

Finally, following IB2 in §3.2, we apply Eq. (1) to patches within
periods. To this end, let W = [w(j, n)] : € RN*M be the
collection of weights from Eq. (1), we introduce learnable scalar
weights wf, wliz for K patches, and define Wk = wfVNV where
1 < k < K. Then the set of weights W1, ..., Wg, which encode our
constraint function, replaces the fully learnable weights Wy, ... Wx
in §3.2.1, analogous to physics-informed learning. It is noteworthy
that, this weighting mechanism only uses O(T + K) parameters, in
contrast to the O(KMN) parameters in §3.2.1.

3.4 Backcast-Residual Decomposition

From IB1 (§3.1), LVMs tend to forecast periodic patterns while may
overlook the global trend, as validated by [51]. To complement
this bias, we encapsulate our model within a lightweight backcast-
residual decomposition framework [35] as shown in Fig. 5(a).

Let LVM-IB(-) be the proposed block that encode IB1-IB3 (§3.1-
§3.3). In addition to forecast §', the decomposition framework ap-
plies LVM-IB(-) to “backcast” the lookback window x/, i.e., [%!, '] =
LVM-IB(x?) (the details of backcast is deferred to §3.5). Due to the
period-prone prediction, §' tends to be forecasted periods, %' tend
to be the seasonal component of x* , and the residual Ax’ = x — %/
tend to be the trend component. Thus, Ax' is fed to a linear layer to
forecast the trend component Ay’ € R¥. Finally, Aj’ is combined
with the period forecast ¥ to determine the final forecast }Alfﬁmal. The
overall process can be summarized as:

[%,¥'] = LWM-IB(x') > Ax' =x' %' —

Ayi = Ax'WE + b8 > }A’gnal :gOAyi +(1-9) oyi



SVTIME : Small Time Series Forecasting Models Informed by “Physics” of Large Vision Model Forecasters

(a) Backcast-Residual Decomposition
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(b) LVM Inductive Bias Informed Block
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Figure 5: An overview of SVTIME framework. (a) SVTIME(-t) uses a backcast-residual decomposition to adaptively learn trend
and seasonal components. (b) LVM-IB block uses linear layers and a constraint function to encode IB1-IB3 (§3.1-§3.3).

where WB € RT*H b8 ¢ RH are parameters of the linear layer for
trend forecasting, and g = sigmoid(w9) € [0,1] is a lightweight
gate with a learnable scalar parameter w9.

By doing so, the proposed SVTIME(-t) can compensate the strong
bias toward forecasting periods.

3.5 Summary of SVTIME(-t) Model

Putting all components together, Fig. 5 summarizes the overall
framework, where Fig. 5(b) shows the LVM-IB(-) block. In this paper,
we study two instantiations of the LVM-IB(-) block, leading to two
overall models: (1) SVTIME uses only IB1 and IB2 and sets W,
..., Wk as learnable parameters (i.e., the model in §3.2.1); and (2)
SVTIME-t uses IB1-IB3 and configures W1, ..., Wi with annealing
constraint function (i.e., the model in §3.3.1).

They have different mechanisms for backcast in Eq. (3): (1) SV-
TimE simply extends Wy from an N-by-M matrix to an N-by-
(N + M) matrix for all 1 < k < K, i.e, predicting N more peri-
ods in %’ to represent an reconstruction of x’; (2) SVTIME-t uses
Wi (1 <1 < K) to forecast § while uses the learnable scalar
[wf - wﬁ] only (without constraint function) to backcast %'.

Additionally, our LVM-IB(-) block allows stacking multiple blocks
by properly setting input/output dimensions. For example,

[%],,,9'] =LVM-IB(X,,), where %j,, = LVWM-IB(X)),  (4)
where %! = x'. This allows re-parameterizing the history as ﬁ;H

before performing the final backcasting and forecasting. Empirically,
this trick is found useful in improving forecasting performance.

Training. After obtaining Y = [§', ..., ], SVTIME(-t) is trained by
minimizing MSE, i.e, 5= 22, S 1Y, - Yo, |I2.

Complexity. The parameter size of a single LVM-IB(-) block in
SVTiIME is O(KN(M + N) + TH), and that of SVTiME-t is O(T +
K + TH), which further reduces the size. Since K, M, N are small,
the main overhead comes from TH — the linear layer in Eq. (3).
However, as shown in Fig. 1, these sizes are competitively small,
especially considering the earned performance gains.

4 Experiments

Datasets. We adopt 8 widely used MTS benchmarks: ETT (Electric-
ity Transformer Temperature), including ETTh1, ETTh2, ETTm1,

ETTm2 [53]; Weather [53]; Electricity [53], Traffic [45]; and Solar-
Energy [29]. Following standard protocols [32, 45], we split the
datasets chronologically into training/validation/test sets using a
60%/20%/20% ratio for ETT and 70%/10%/20% for the others. The
prediction horizon H is set to {96, 192, 336, 720} for all datasets. The
look-back T is fixed at 512. The details about all of the datasets can
be found in Appendix A.1.

The Compared Methods. We compare SVTIME(-t) with 21 SOTA
methods, including seven lightweight models: (1) DLinear [50];
(2)FITS [47],(3) TexFilter [49];(4) PaiFilter [49]; (5) SparseTSF
[25]; (6) CycleNet [24]; (7) CMoS [38]; eight complex models:
(8) TimeMixer [40]; (9) TiDE [5]; (10) SCINet [26]; (11) TimesNet
[44]; (12) iTransformer [29]; (13) PatchTST [32]; (14) FEDFormer
[54]; (15) Autoformer [45]; six pre-trained large models covering
LVM: (16) VisionTS [4]; LLMs: (17) GPT4TS [55]; (18) TimeLLM [21];
(19) CALF [27]; VLM: (20) TimeVLM [52]; and TSFM: (21) LightGTS
[41]. Here, LightGTS is selected for its better performance than
other SOTA TSFMs such asMoirai [28], Chronos [1], and Time-MoE
[37], as reported in [41].

Additionally, we compare our method with a KD method —
OccamVTS [30] — specifically in §4.5. For our method, we evaluate
both SVTIME and SVTIME-t. The hyperparameter K — the number
of patches (§3.2.1) — is set as | P/6]. We analyze the impact of K
in §4.5. The number of LVM-IB(-) block is searched within [1, 3]
using validation set. Ablation studies include several variants of our
methods (§4.3). Following [4], the imaging period P for VisionTS,
SVTIME, and SVTIME-t is set based on each dataset’s sampling
frequency (see Appendix A.1).

Evaluation. Following [32, 39, 50], we use Mean Squared Error
(MSE) and Mean Absolute Error (MAE) to evaluate the LTSF per-
formance of the compared methods, and use parameter size, GPU
cost, training/inference time, etc., to evaluate model complexity.

4.1 Experiment Results

Table 1 presents the LTSF performance of the 7 lightweight models,
most of which are composed of linear layers. Table 2 summarizes the
LTSF performance of the 8 complex models, including MLP-based,
CNN-based, and Transformer-based architectures. All models were
trained 3 times with NVIDIA RTX 6000 Ada GPUs. The averaged



Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Table 1: LTSF performance comparison of lightweight models on benchmark datasets. The results are averaged over 5 runs
across prediction horizons H € {96, 192,336,720}. Lower MSE and MAE indicate better performance. Red (blue) values indicate

the best (second-best) MSE and MAE per row. Full results are available in Appendix B.2.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic Solar
Model MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | Wins
DLinear (2022) | 0.447 0459 | 0.442 0447 | 0370 0396 | 0.264 0329 | 0.245 0300 | 0.163 0.261 | 0.421 0294 | 0.232 0297 | 0(0)
FITS (2023) 0430 0439 | 0.346 0392 | 0369 0.387 | 0.258 0317 | 0.245 0283 | 0296 0.400 | 0431 0305 | 0.774 0705 | 1(2)
TexFilter (2024) | 0.424 0446 | 0.372 0410 | 0.371 0399 | 0288 0.340 | 0.232 0270 | 0.167 0.264 | 0415 0.299 | 0.209 0271 | 0 (1)
PaiFilter (2024) | 0429 0442 | 0371 0409 | 0.364 0390 | 0.265 0.326 | 0.223 0.262 | 0.165 0259 | 0.416 0.294 | 0.199 0.255 | 3 (1)
SparseTSF (2024) | 0.425 0444 | 0.360 0399 | 0363 0.382 | 0.256 0.314 | 0.244 0281 | 0.197 0.292 | 0432 0298 | 0.237 0269 | 2(0)
CycleNet (2024) | 0.419 0431 | 0.358 0396 | 0364 0.386 | 0.258 0317 | 0.241 0279 | 0.158 0.251 | 0412 0.287 | 0.229 0289 | 0(3)
CMos (2025) 0416 0431 | 0355 0.399 | 0363 0384 | 0.267 0323 | 0231 0.269 | 0.165 0257 | 0.424 0286 | 0224 0.263 | 1(2)
SVTiMe-t (Ours) | 0417 0430 | 0.357 0399 | 0.358 0379 | 0259 0.316 | 0.231 0.269 | 0.165 0.258 | 0419 0.286 | 0.232 0273 | 0(6)
SVTIME (Ours) | 0.418 0.421 | 0.351 0.386 | 0.346 0.369 | 0265 0.321 | 0.240 0280 | 0.157 0.247 | 0.378 0.248 | 0.213 0.245 | 9 (1)

Table 2: LTSF perforamnce comparison of complex models on benchmark datasets. Full results are available in Appendix B.2.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic Solar
Model MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | Wins
& | TimeMixer (2024) 0470 0475 | 0353 0402 | 0.429 0428 | 0312 0354 | 0244 0.280 | 0.185 0.286 | 0.438 0320 | 0225 0.280 | 0(0)
= | TiDE (2023) 0421 0433 | 0343 0389 | 0.366 0.385 | 0.257 0.315 | 0.243  0.280 | 0.165 0258 | 0.436 0313 | 0236 0.275 | 3(2)
Z | SCINet (2021) 0483 0472 | 0399 0428 | 0.427 0432 [ 0296 0347 | 0259 0294 | 0217 0.324 | 0.510 0400 | 0227 0310 | 0(0)
O | TimesNet (2022) 0.538 0.514 | 0.397 0.434 | 0.446 0.438 | 0.323 0.358 | 0.275 0.305 | 0.214 0311 | 0.623 0.335 | 0.216 0.287 | 0(0)
S | Autoformer (2021) [ 0544 0535 | 0438 0480 | 0569 0505 | 0.340 0389 | 0355 0397 | 0.276 0375 | 0.666 0.407 | 0.848 0.692 | 0(0)
§ FEDFormer (2022) 0.480 0.498 | 0.437 0.480 | 0.432 0.458 | 0.343 0392 | 0.366 0.413 | 0.231 0.343 | 0.610 0.373 | 0.330 0.415 | 0(0)
G | PatchTST (2023) 0434 0452 | 0347 0390 | 0.354 0385 | 0.259 0321 | 0.226 0.265 | 0.164 0.258 | 0.396 0271 | 0.187 0250 | 3 (6)
S | iTransformer (2023) | 0465 0470 | 0.396 0422 | 0372 0401 | 0272 0332 | 0235 0.274 | 0.161 0.258 | 0.398 0.284 | 0.206 0269 | 0(2)
SVTiME-t (Ours) 0.417 0.430 | 0357 0.399 | 0.358 0.379 | 0.259 0.316 | 0.231 0.269 | 0.165 0.258 | 0.419 0.286 | 0.232 0.273 | 1(6)
SVTIME (Ours) ‘ 0.418 0.421 ‘ 0.351  0.386 ‘ 0.346  0.369 ‘ 0.265 0.321 ‘ 0.240  0.280 ‘ 0.157 0.247 ‘ 0.378 0.248 ‘ 0.213  0.245 ‘ 9 (1)

MSE and MAE across all prediction horizons H € {96, 192,336,720}
are reported. The full results can be found in Appendix B.2.

From Table 1, several key insights emerge: (1) From Fig. 1, the
smallest models are CMoS, FITS, and SparseTSF, which usually en-
code a single hypothesis, e.g., correlation among historical chunks
in CMoS, simplifying their designs. The simplification may underfit
some complex datasets, leading to their inferior performance in
Table 1; (2) The best baseline appears to be PaiFilter, whose pa-
rameter size is at a similar level as our SVTIME, while being larger
than SVTIME-t, indicating a less effective use of parameters; (3) Our
SVTIME shows consistent superiority over the lightweight baselines,
achieving 9 first-places (39 first-places in Table 7 of Appendix B.2),
confirming its non-trivial design inspired by LVM biases, and sug-
gesting a best trade-off between performance and model size; and
(4) Our SVTimE-t further reduces the model size, thus is less pow-
erful, but still achieves 6 second-places, surpassing the baselines in
most cases.

Moreover, from Table 2, complex models — whose parameter
sizes range from 400K to 10.5M (Fig. 1(c)), i.e., ~ 2X to 50X larger
than SVTIME — do not show superiority over lightweight models.
This observation is consistent with some existing studies [24, 25].
The best complex baseline appears to be PatchTST, confirming its
well-accepted design of time series patching (note: different from
our patching, as discussed in §3.2.1) and channel-independence
assumption. Whereas, it needs 3M+ parameters. In contrast, SV-
TiME(-t) outperform these baselines in most cases, particularly in
handling datasets that contain anomalies such as ETTm1 (see §4.5).

These results underscore SVTIME’s potential as a powerful small
model, while suggest SVTIME-t as a less powerful yet more compact
model for practical deployment in resource-constrained scenarios.

4.2 Comparing with Pretrained Large Models

Fig. 6(a)(b) compare SVTIME(-t) with the six pre-trained large mod-
els on Electricity and Traffic datasets after fine-tuning with the
training sets. The full results on other datasets can be found in
Appendix B.4. From the figures, we observe (1) Significant dif-
ference in parameter size and inference time between SVTIME(-
t) and other large models. For example, SVTIME only uses 0.2%
parameters of VisionTS, and 0.003% parameters of TimeLLM; (2)
VisionTS performs better than other large models, confirming the
rationale of using LVM to inspire our small models; (3) Competi-
tive performance of SVTIME, which shows 3% (2%) improvement
over VisionTS on Electricity (Traffic) dataset, and may be the only
small model in our experiments that can rival large models, without
any pre-training; and (4) SVTIME-t, despite its slightly lower per-
formance than VisionTs, still outperforming some large models
such as GPT4TS, CALF, and LightGTS, suggesting its potential in
energy-saving scenarios.

4.3 Ablation Analysis

We validate the design of SVTIME(-t) through ablation studies on
all datasets. Table 3 summarizes the analysis: (a) removes IB2 from
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Table 3: Ablation analysis of SVTIME(-t). MSE and MAE are averaged over different prediction lengths. Lower MSE and MAE are
better. “Improvement”s of ablations (a)(b) (or (c)(d)(e)) are relative to SVTIME (or SVTIME-t).

Method ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic Solar
MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE MSE MAE

SVTIME 0418  0.421 | 0351 0386 | 0.346 0369 | 0265 0321 | 0.240 0280 | 0.157 0.247 | 0378 0.248 | 0.213  0.245

(a) - B2 0420 0429 | 0.342 0389 | 0361 0.380 | 0.254 0314 | 0.243 0279 | 0.165 0257 | 0485 0344 | 0233  0.264

Improvement | -0.48%  -1.90% | 2.56% -0.78% | -4.34%  -2.98% 4.15%

2.18% -1.25% 0.36% -5.10%  -4.05% | -28.31% -38.71% | -9.39% -7.35%

(b) - Backcast | 0.411 0.421 0.369  0.402 0.420 0.428 0.287
Improvement | 1.67% 0.00% | -5.13% -4.15% | -21.39% -15.99% | -8.30%

0.340 0.263 0.301 0.214 0.295 0.518 0.282 0.418 0.434
-5.92% | -9.58%  -7.50% | -36.31% -19.43% | -37.04% -13.71% | -96.24% -77.14%

SVTIME-t 0.417 0.430 | 0.357  0.399 0.358 0.379 0.259 0.316 0.231 0.269 0.165 0.258 0.419 0.286 0.232 0.273
(c) -IB2 0.422 0.428 0.366 0.411 0.361 0.377 0.289 0.336 0.293 0.315 0.170 0.261 0.425 0.284 0.251 0.272
Improvement | -1.20% 0.47% | -2.52% -3.01% | -0.84% 0.53% | -11.58% -6.33% | -26.84% -17.10% | -3.03%  -1.16% | -1.43% 0.70% -8.19% 0.37%
(d) -IB3 0.428 0.440 0.359  0.399 0.362 0.378 0.289 0.336 0.243 0.280 0.169 0.260 0.425 0.283 0.251 0.273

Improvement | -2.64%  -2.33% | -0.56% 0.00% | -1.12% 0.26% | -11.58%

-6.33% -5.19% -4.09% -2.42% -0.78% -1.43% 1.05% -8.19% 0.00%

(e) - Backcast | 0.488 0.510 0.371  0.404 0.565 0.449 0.313
Improvement | -17.03% -18.60% | -3.92% -1.25% | -57.82% -18.47% | -20.85%

0.354 0.295 0.319 0.212 0.293 0.622 0.387 0.385 0.423
-12.03% | -27.71% -18.59% | -28.48% -13.57% | -48.45% -35.31% | -65.95% -54.95%

(a) Comparison on Electricity dataset
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Figure 6: LTSF performance comparison with pre-trained
large models on (a) Electricity and (b) Traffic datasets. Bubble
size is proportional to the parameter size of each model.

SVTIME, i.e., without using W1, .., Wk for enabling patch-wise vari-
ety. This is equivalent to the model with only IB1 (§3.1.1), i.e., using
a single W; (b) removes the backcast-residual decomposition frame-
work (§3.4) from SVTIME; (c) removes IB2 from SVTIME-t, which
is equivalent to set K =1 for Wl, o WK (see §3.3.1), i.e., disabling
patch-wise variety; (d) removes IB3 from SVTIME-t, e.g., removing
the annealing constraint function by simply setting w(j,n) = 1

Table 4: Comparison between SVTIME(-t) and OccamVTS.

Metrics ‘ SVTiME SVTiME-t OccamVTS
MSE 0.346 0.358 0.349
MAE 0.369 0.379 0.372
GPU memory (MiB) 1,095 692 11,859
Train time (s/epoch) 2.9 2.6 275
Inference time (ms/iter) 1.08 0.84 2.83

Parameter size 215.5K 162.7K 2,834.4K

in Eq. (1) for V1 < j < M, 1 < n < N, which is equivalent to set
W = wﬁ for 1 < k < K; and (e) removes the backcast-residual
decomposition framework from SVTIME-t. Note that IB1 cannot be
removed as it establishes the basis of the proposed models.

Table 3 reveals several key insights into the design of SVTIME(-t).
In (a)(c), removing IB2 — patch-wise variety — from the modeling
of historical periods degrades the performance of SVTIME(-t) in
most cases, confirming the effectiveness of fine-grained modeling
of within-period patches using Wy (or W) (1 < k < K). In (b)(e),
we observe a major performance drop by removing the backcast-
residual decomposition, highlighting the disadvantage of solely
modeling periodical patterns while suggesting the effectiveness
of the adaptive decomposition in mitigating this bias. Finally, (d)
underscores the importance of the proposed annealing constraint
function: removing it leads to uniform attention to historical peri-
ods, which contradicts LVM’s distance-attenuating local attention,
indirectly validating IB3’s usefulness in LVM forecasters.

Overall, the patch-wise variety, distance-attenuating local atten-
tion, and the backcast-residual decomposition are crucial to the
success of SVTIME and SVTIME-t.

4.4 Comparing with Knowledge Distillation

We compare SVTIME(-t) with OccamVTS [30] — a knowledge distil-
lation (KD) based student model trained using MAE as its teacher
model — using EETm1 dataset as an example (results on other
datasets are similar thus are omitted for brevity).

Table 4 summarizes the comparison in terms of both LTSF perfor-
mance and computational costs. All models were trained with the
same batch size of 512. The results are averaged over all prediction
horizons H € {96, 192,336, 720}. From Table 4, we observe (1) all of
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Figure 7: Results on the impact of the number of patches K on (a) SVTIME; and (b) SVTIME-t in terms of LTSF performance and
model size; and the impact of lookback window (or context) length on both models using (c) ETTm1; and (d) Weather datasets.
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Figure 8: Comparison of (a) DLinear; (b) SVTIME-t; and (c) SVTIME on the same example in the ETTm1 dataset that highlights

the importance of distance-attenuating local attention.

the three models demonstrate comparable performance, while SV-
TiME slightly outperforms OccamVTS, suggesting all of the models
inherit the merits of the LVM forecaster, either through “physics”
guided learning or KD; (2) OccamVTS may not be considered as a
lightweight model for its 2.8M parameter size. This is because it
uses Transformer backbone — the same as its teacher model — and
doesn’t support cross-architecture KD; (3) SVTIME-t is the most
efficient model with 17X less memory, 106X faster training, and
3x faster inference than OccamVTS. Also, SVTIME’s cost is more
appealing than OccamVTS. The high training cost of OccamVTS is
due to its involvement of a large teacher model MAE; and (4) we
note that OccamVTS’s reliance on a large teacher model needs extra
costs for training and fine-tuning the teacher model before KD. As
such, SVTIME(-t) offers advantages over KD-based models.

4.5 Performance Analysis

In this section, we perform an in-depth analysis of SVTIME(-t).

Impact of the number of patches. Fig.7(a)(b) assess the impact of
the number of within-period patches, i.e., K (§3.2.1) on the perfor-
mance of SVTIME and SVTIME-t when fixing period length P = 96
on the ETTm1 dataset. Also, since increasing K leads to more pa-
rameters in Wy, ..., Wk (for SVTIME) and Wl, oy WK (for SVTIME-t),
we evaluate their parameter sizes. From Fig.7(a)(b), both models
achieve better performance with a larger K, which corresponds to
more fine-grained patching. Notably, for SVTIME, the performance
improvement from K = 16 to K = 96 is small while the model size
expands a lot, suggesting a saturating point at K = 16. For SVTIME-t,
the changing ranges of MSE and model size caused by varying K
are relatively small. This is because W1, .., Wx only have O(K)
learnable parameters, thus varying K has a small impact. Overall,
for both models, we set K = | P/6] for the best trade-off between
performance and efficiency.

Distance-attenuating local attention. Fig. 8 compares SVTIME
SVTiIME-t, and DLinear on a sample ETTm1 case that highlights

the importance of distance-attenuating local attention (§3.3). The
lookback window starts with a flattened high value and ends with
a notable dip. DLinear uses a linear layer to forecast without any
constraint, thus doesn’t guarantee local attention. In fact, Fig. 8(a)
shows its first two predicted dips might be influenced by the high
value in the lookback window, while the first two ground truth dips
follow the nearby dip in the lookback window, leading to errors.
In contrast, SVTIME-t effectively uses its constraint function to
predict the first two dips. SVTIME slightly underperforms but is
still better than DLinear. Moreover, SVTIME-t’s forecast of all dips
gradually rises due to its attenuating local attention, which matches
the ground truth. However, DLinear has no such pattern.

Impact of lookback window. Fig. 7(c)(d) assess SVTIME(-t)’s per-
formance w.r.t. varying lookback window length on ETTm1 and
Weather datasets. Using MSE metric, we observe both SVTIME and
SVTIME-t benefit from longer lookback windows. SVTIME is more
effective than SVTIME-t when the lookback window is small. This is
possibly because a shorter lookback window may lead to more con-
strained local weights by SVTIME-t’s annealing constraint function,
resulting in a slight sensitivity to a small context length.

5 Conclusion

This paper introduces SVTIME and SVTIME-t, novel lightweight
models whose design is informed by the inductive biases — analo-
gous to the “physics” governing the behaviors — of a powerful LVM
forecaster. Through the discovery and re-programming of three in-
ductive biases, i.e., inter-period consistency, patch-wise variety, and
distance-attenuating local attention, along with the adoption of a
backcast-residual decomposition framework, SVTIME(-t) effectively
inherits the merits of the LVM forecaster, while mitigating the dom-
inant bias of period-prone forecasting. Extensive experiments on 8
benchmark datasets with 21 SOTA baselines covering lightweight,
complex, pre-trained large models, and a KD model demonstrate
SVTIME(-t)’s large-model-like performance and economical size,
highlighting the potential in energy-saving scenarios.
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A Experiment Setting
A.1 Datasets

Following [26, 29, 38, 44], our experiments are conducted on 8
widely used LTSF benchmark datasets that cover a wide range of
sampling frequencies, number of variates, levels of periodicity, and
real-world domains. The four ETT datasets (ETTh1, ETTh2, ETTml,
ETTm?2) record oil temperature from two electric transformers,
sampled at 15-minute and hourly intervals. The Weather dataset
collects measurements of meteorological indicators in Germany
every 10 minutes. The Electricity dataset records hourly electricity
consumption of Portuguese clients. The Traffic dataset measures
hourly road occupancy rates from sensors on San Francisco free-
ways. The Solar contains hourly solar power output measurements
from U.S. photovoltaic plants. Table 5 summarizes the statistics of
the datasets.

Table 5: Statistics of the benchmark datasets. “Dataset Size”
is organized in (Train, Validation, Test).

Dataset # Variates Series Length Dataset Size Frequency
ETTh1 7 17420 (8545, 2881, 2881) Hourly
ETTh2 7 17420 (8545, 2881, 2881) Hourly
ETTm1 7 69680 (34465, 11521, 11521) 15 mins
ETTm2 7 69680 (34465, 11521, 11521) 15 mins
Weather 321 52696 (36792, 5271, 10540) 10 mins
Electricity 21 26304 (18317, 2633, 5261) Hourly
Traffic 862 17544 (12185, 1757, 3509) Hourly
Solar 137 52560 (36792,5768,11024) Hourly

A.2 Running Environment

The experiments are conducted on a Linux server (kernel 5.15.0-139)
with NVIDIA RTX 6000 Ada GPUs (48 GB). The environment uses
Python 3.12.8, PyTorch 2.5.1 with CUDA 12.4 and cuDNN 9.1. The
key libraries include NumPy 2.1.3, Pandas 2.2.3, Matplotlib 3.10.0,
SciPy 1.15.1, scikit-learn 1.6.1, and torchvision 0.20.1.

B More Experimental Results
B.1 Statistical Stability

To ensure the statistical reliability of our results, we trained and
evaluated all models three times on each benchmark dataset using
different random seeds (seed = 2021 ~ 2023). Table 6 reports
the average standard deviations of SVTIME (-t) across the eight
datasets. As shown in the table, the maximum standard deviation
is below 0.004, indicating that SVTime(-t) exhibits strong stability
and robustness.

B.2 Full Results with baseline Models

Tables 7 and Table 8 provide the complete comparison of SVTIME
(-t) with seven light-weight models and eight complex models from
different categories, respectively, serving as a supplement to Table 1
and Table 2 in the main paper.

From these tables, we can observe that SVTIME maintains a clear
advantage when compared against all baseline methods. Against
the light-weight models, it achieves 39 first-place results; against
the complex models, it achieves 35 first-place results. Although

Table 6: Standard deviations of SVTIME (-t) across all base-
lines. Results computed over three independent runs with
random seeds (seed = 2021 ~ 2023).

SVTIME-t SVTIME
Dataset MSE MAE ‘ MSE MAE

ETTh1 0.417 = 0.001  0.430 = 0.001 | 0.418 = 0.001  0.421 + 0.001
ETTh2 0.358 = 0.003  0.399 = 0.001 | 0.351 = 0.003 0.386 + 0.001

ETTm1 0.358 £ 0.002  0.379 + 0.001 | 0.346 + 0.002 0.369 + 0.001
ETTm2 0.260 + 0.001  0.316 + 0.001 | 0.265 £ 0.004 0.321 + 0.002
Weather | 0.231 +£0.001 0.269 + 0.001 | 0.240 + 0.002  0.280 + 0.003

Electricity | 0.165 + 0.000  0.258 + 0.000 | 0.157 + 0.003  0.247 + 0.003
Traffic 0.419 = 0.000 0.287 = 0.001 | 0.378 = 0.001  0.248 + 0.003
Solar 0.232 £ 0.001  0.274 = 0.001 | 0.213 = 0.001  0.245 + 0.002

SVTIME-t shows some performance degradation, it still obtains 19
second-best or better results when compared with the light-weight
models and 26 second-best or better results when compared with
the complex models. These results demonstrate that our SVTIME
(-t) as a light-weight model, remains highly competitive with both
light-weight and complex baselines. And these results further vali-
date that incorporating inductive biases from vision models is an
effective strategy for designing small yet powerful models.

B.3 Full Ablation Results

In Table 3, we present the ablation analysis of SVTIME (-t), where
the MSE and MAE values are averaged over different prediction
horizons. Table 9 further provides the complete results covering
all prediction lengths H € {96, 192,336,720} for comprehensive
reference. We observe that removing the patch-wise variety, the
distance-attenuating local attention, or the back-cast mechanism at
different horizons leads to a clear performance degradation. This
further demonstrates the indispensable role of these components
in SVTIME (-t), as they collectively contribute significantly to the
overall forecasting performance.

B.4 Comparison with Pre-trained Models

Table 10, as a complement to Fig. 6, provides a more extensive
comparison between SVTIME and various large pre-trained mod-
els on general time series datasets. CALF[27], GPT4TS[55] and
TimeLLM[21] are based on language pretrained models; VisionTS[4]
leverages vision pretrained models; TimeVLM[52] uses vision and
language pretrained models; and LightGTS[41] is pretrained purely
on time series data. Our model achieves the best performance on
four out of seven datasets, and on the remaining three datasets, the
performance gap does not exceed 10%. Considering the substantial
differences in parameter scale and inference speed between SV-
TiME and these large pre-trained models, such comparable results
demonstrate that directly training a lightweight model on the target
dataset—without costly pre-training and fine-tuning—can still be
highly effective and valuable.
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Table 7: Full LTSF results on the benchmark datasets with Light-weight Models. Lower MSE and MAE indicate better forecasting
accuracy. Red denote the best performance, blue indicate the second-best results.

SVTIME-t SVTIME Dlinear FITS TexFilter PaiFilter SparceTSF CycleNet CMoS

Pred_len | MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

- 96 0.368 0.394 | 0.361 0.387 | 0.379 0.405 | 0.396 0.414 | 0.390 0.422 | 0.385 0.411 | 0.408 0.425 | 0.374 0.398 | 0.377 0.401
ﬁ 192 0.406 0.418 | 0.409 0.408 | 0.448 0.461 | 0.430 0.435 | 0.418 0.437 | 0.421 0.433 | 0.438 0.447 | 0.404 0.417 | 0.410 0.422
E 336 0.431 0434 | 0445 0.428 | 0449 0452 | 0.446 0.444 | 0432 0449 | 0437 0.445 | 0.423 0.444 | 0435 0437 | 0426 0434
720 0.464 0.472 | 0.457 0.461 | 0.512 0.519 | 0.448 0.462 | 0.457 0.477 | 0.474 0.481 | 0.433 0461 | 0.464 0.472 | 0.451 0.466

~ 96 0.283  0.344 | 0.283 0.329 | 0.280 0.347 | 0.286  0.349 | 0.303 0.364 | 0.303 0.361 | 0.311 0.362 | 0.308 0.339 | 0.306 0.363
E'E 192 0.349  0.388 | 0.348 0.374 | 0.355 0.399 | 0.345 0.386 | 0.370 0.402 | 0.366 0.399 | 0.364 0.397 | 0.335 0.382 | 0.355 0.395
E‘ 336 0.379  0.416 | 0.364 0.395 | 0435 0.453 | 0364 0.403 | 0.391 0.424 | 0.389 0.426 | 0.373 0.408 | 0.369 0.413 | 0.367 0.407
720 0.419 0.448 | 0.408 0.446 | 0.697 0.591 | 0.389 0.429 | 0.423 0.449 | 0.425 0.452 | 0393 0430 | 0.419 0.449 | 0.390 0.432

- 96 0.303 0.348 | 0.305 0.341 | 0.312 0.359 | 0.318 0.358 | 0.313 0.366 | 0.305 0.359 | 0.313 0.353 | 0.309 0.354 | 0.305 0.352
E 192 0.337  0.368 | 0.320 0.351 | 0.350 0.383 | 0.348 0.375 | 0.352 0.389 | 0.340 0.380 | 0.342 0.370 | 0.350 0.377 | 0.341 0.371
E 336 0.369 0.385 | 0.353 0.378 | 0.378 0.400 | 0.379 0.392 | 0.380 0.404 | 0.370 0.395 | 0.373 0.388 | 0.372 0.391 | 0.372 0.388
720 0.422 0.414 | 0.407 0.405 | 0.439 0.441 | 0.431 0.420 | 0.439 0.438 | 0.439 0427 | 0423 0415 | 0426 0.421 | 0.433 0.423

~ 96 0.165 0.254 | 0.182 0.253 | 0.168 0.261 | 0.169 0.259 | 0.188 0.276 | 0.179 0.265 | 0.166  0.256 | 0.166 0.254 | 0.177 0.264
E 192 0.224 0.293 | 0.243 0.304 | 0.227 0.306 | 0.223  0.295 | 0.250 0.317 | 0.235 0.308 | 0.223  0.293 | 0.220 0.292 | 0.233 0.302
E 336 0.280 0.331 | 0.294 0.341 | 0.281 0.342 | 0.275 0.329 | 0.314 0.358 | 0.281 0.338 | 0.273 0.326 | 0.281 0.334 | 0.286 0.336
720 0.369 0.387 | 0.339 0.387 | 0.381 0.407 | 0.363 0.383 | 0.400 0.409 | 0.364 0.392 | 0.362 0.382 | 0.366 0.388 | 0.371 0.389

B 96 0.156  0.207 | 0.169 0.223 | 0.173 0.236 | 0.174 0.228 | 0.154 0.208 | 0.145 0.198 | 0.173  0.227 | 0.170  0.224 | 0.158 0.209
-% 192 0.198 0.245 | 0.214 0.262 | 0.220 0.282 | 0.216 0.263 | 0.199 0.248 | 0.190 0.240 | 0.215 0.261 | 0.212  0.260 | 0.199 0.247
é’ 336 0.250 0.286 | 0.257 0.293 | 0.262 0.316 | 0.262 0.296 | 0.249 0.285 | 0.241 0.278 | 0.261 0.295 | 0.258 0.293 | 0.248 0.285
720 0321 0.336 | 0.321 0.340 | 0.325 0.367 | 0.327 0.343 | 0.328 0.339 | 0.316 0.332 | 0.327 0.343 | 0.323 0.339 | 0.319 0.334

_é' 96 0.135 0.231 | 0.127 0.221 | 0.136 0.234 | 0.273  0.385 | 0.132 0.231 | 0.132  0.230 | 0.168 0.266 | 0.128 0.223 | 0.137 0.231
=2 192 0.151  0.245 | 0.143 0.234 | 0.151 0.248 | 0.284 0.392 | 0.155 0.251 | 0.150 0.246 | 0.188 0.285 | 0.144 0.237 | 0.153 0.246
?‘j 336 0.167 0.261 | 0.158 0.248 | 0.166 0.266 | 0.298  0.401 | 0.171 0.270 | 0.167 0.263 | 0.201  0.298 | 0.160 0.256 | 0.166 0.259
= 720 0.207 0.295 | 0.198 0.283 | 0.200 0.298 | 0.331  0.420 | 0.209 0.304 | 0.209  0.299 | 0.229 0.319 | 0.198 0.288 | 0.206 0.293
o 96 0.395 0.275 | 0.353 0.231 | 0.398 0.282 | 0.411 0.298 | 0.379 0.280 | 0.385 0.277 | 0.411 0.285 | 0.389 0.275 | 0.401 0.274
% 192 0.408 0.281 | 0.364 0.243 | 0.410 0.287 | 0.420 0.298 | 0.407 0.296 | 0.406 0.288 | 0.425 0.295 | 0.403 0.281 | 0.414 0.279
fis) 336 0.418 0.285 | 0.375 0.248 | 0420 0.293 | 0.429 0302 | 0.419 0.302 | 0.417 0.294 | 0.429 0.296 | 0.410 0.285 | 0.424 0.286
720 0.454 0305 | 0.421 0.271 | 0457 0.314 | 0.466 0.322 | 0.453 0.318 | 0.457 0.317 | 0.465 0.315 | 0.446 0.305 | 0.460 0.305

96 0.206  0.257 | 0.183 0.238 | 0.206 0.279 | 0.778 0.706 | 0.189 0.253 | 0.184 0.240 | 0.213  0.257 | 0.204 0.273 | 0.204 0.252

8 192 0.229 0271 | 0.213 0.243 | 0.227 0.293 | 0.777 0.705 | 0.215 0.280 | 0.199 0.255 | 0.233  0.266 | 0.225 0.289 | 0.222 0.259
& 336 0.242 0.281 | 0.228 0.243 | 0.242 0.304 | 0.775 0.705 | 0.210 0.271 | 0.204 0.260 | 0.248 0.275 | 0.239  0.293 | 0.232 0.269
720 0.250 0.285 | 0.228 0.254 | 0.251 0.311 | 0.766  0.703 | 0.220 0.278 | 0.209 0.264 | 0.254 0.276 | 0.248 0.301 | 0.237 0.270

Wins 2(17) 39 (2) 1(0) 2(7) 0(5) 11(5) 5(5) 4(16) 0(9

Table 8: Full LTSF results on the benchmark datasets with Complex Models. Lower MSE and MAE indicate better forecasting
accuracy. Red denote the best performance, blue indicate the second-best results.

SVTiME-t SVTimME TimeMixer TiDE SCINet TimesNet Autoformer  FEDFormer PatchTST iTransformer
Pred_len | MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
- 96 0368 0.394 | 0.361 0.387 | 0.397 0.424 | 0.378 0.402 | 0.397 0.418 | 0.453 0.462 | 0.500 0.499 | 0.420 0.462 | 0.381 0.410 | 0.403  0.426
!f 192 0.406 0.418 | 0.409 0.408 | 0.448 0458 | 0.413 0.424 | 0.529 0.488 | 0.500 0.494 | 0.516 0.519 | 0.474 0.498 | 0.420 0437 | 0.435 0.448
E 336 0.431 0434 | 0445 0.428 | 0495 0491 | 0436 0438 | 0476 0.470 | 0.515 0.507 | 0.510 0.516 | 0.480 0.492 | 0.440 0.452 | 0.451  0.462
720 0.464 0472 | 0457 0.461 | 0.538 0.528 | 0.456 0.467 | 0.529 0.513 | 0.686 0.593 | 0.650 0.607 | 0.547 0.540 | 0.496 0.508 | 0.570  0.546
~ 96 0.283 0.344 | 0.283 0.329 | 0.292 0357 | 0.277 0.339 | 0.345 0.386 | 0.353 0.405 | 0.412 0.462 | 0.392 0.450 | 0.278 0.340 | 0.307  0.363
!f 192 0.349 0.388 | 0.348 0.374 | 0.362 0.403 | 0.342 0.383 | 0.409 0.427 | 0.383 0.422 | 0425 0471 | 0.429 0474 | 0.342 0.381 | 0375  0.405
E 336 0.379 0416 | 0364 0.395 | 0.378 0.420 | 0.363 0.404 | 0.407 0.439 | 0.399 0.438 | 0.415 0.465 | 0.430 0.481 | 0.371 0.408 | 0.441  0.446
720 0.419 0.448 | 0.408 0.446 | 0.379 0.426 | 0.389 0.431 | 0.433 0.458 | 0.454 0.473 | 0.499 0.522 | 0.498 0.516 | 0.395 0.432 | 0.459 0475
- 96 0.303 0.348 | 0.305 0.341 | 0.306 0.360 | 0.312 0.354 | 0.345 0.383 | 0.368 0.395 | 0.576 0.504 | 0.382 0.435 | 0.294 0.348 | 0.314  0.367
E 192 0.337  0.368 | 0.320 0.351 | 0.388 0.405 | 0.345 0.373 | 0.403 0.418 | 0.417 0.417 | 0.571 0.509 | 0.398 0.440 | 0.334 0.372 | 0.350  0.388
E 336 0.369 0.385 | 0.353 0.378 | 0.442 0.440 | 0377 0.392 | 0.436 0.439 | 0.495 0.459 | 0.579 0.511 | 0.445 0.464 | 0.371 0.396 | 0.380  0.405
720 0.422  0.414 | 0.407 0.405 | 0.578 0.506 | 0.431 0.421 | 0.523 0.486 | 0.505 0.479 | 0.551 0.497 | 0.503 0.492 | 0.414 0.426 | 0.444  0.444
~ 96 0.165 0.254 | 0.182 0.253 | 0.182 0.271 | 0.167 0.255 | 0.182 0.275 | 0.210 0.290 | 0.281 0.354 | 0.278 0.354 | 0.169 0.259 | 0.181  0.274
E 192 0.224 0.293 | 0.243 0.304 | 0.256 0.319 | 0.220 0.291 | 0.245 0.318 | 0.278 0.334 | 0.305 0.366 | 0.311 0.375 | 0.223
E 336 0.280 0.331 | 0.294 0.341 | 0.347 0.380 | 0.276 0.329 | 0.316 0.365 | 0.354 0.375 | 0.343 0.386 | 0.349 0.393 | 0.282
720 0369 0.387 | 0.339 0.387 | 0.461 0.445 | 0.364 0.385 | 0.441 0.431 | 0.452 0.434 | 0.432 0.450 | 0.434 0.447 | 0.362
B 96 0.156  0.207 | 0.169 0.223 | 0.156 0.215 | 0.171 0.224 | 0.171 0.227 | 0.172 0.227 | 0.296 0.359 | 0.298 0.366 | 0.149
—g 192 0.198 0.245 | 0.214 0.262 | 0.202 0.253 | 0.214 0.260 | 0.223 0.271 | 0.233 0.279 | 0.335 0.386 | 0.341 0.399 | 0.193
§ 336 0.250  0.286 | 0.257 0.293 | 0.263  0.299 | 0.260 0.294 | 0.283 0.315 | 0.317 0.336 | 0.388 0.420 | 0.397 0.440 | 0.245
720 0.321 0336 | 0.321 0.340 | 0.354 0.354 | 0.327 0.342 | 0.359 0.362 | 0.377 0.376 | 0.401 0.425 | 0.427 0.447 | 0.316
? 96 0.135 0.231 | 0.127 0.221 | 0.151 0.256 | 0.136 0.232 | 0.193 0.306 | 0.186 0.291 | 0.273 0.374 | 0.219 0.333 | 0.133
e 192 0.151  0.245 | 0.143 0.234 | 0.167 0.272 | 0.150 0.244 | 0.198 0.307 | 0.194 0.294 | 0.256 0.358 | 0.228 0.341 | 0.150
:‘j 336 0.167 0261 | 0.158 0.248 | 0.196 0.297 | 0.167 0.261 | 0.221 0.328 | 0.239 0.330 | 0.267 0.368 | 0.228 0.341 | 0.167
= 720 0.207  0.295 0.225  0.320 | 0.206  0.294 | 0.257 0.353 | 0.236 0.328 | 0.307 0.399 | 0.248 0.357 | 0.204
° 96 0395 0.275 0.416  0.310 | 0.407 0.297 | 0.492 0.394 | 0.599 0.325 | 0.631 0.393 | 0.591 0.368 | 0.369
% 192 0.408  0.281 0.435 0318 | 0423 0.305 | 0.496 0.393 | 0.618 0.333 | 0.684 0.424 | 0.600 0.366 | 0.384
=t 336 0.418  0.285 0.439 0320 | 0433 0.311 | 0.509 0.398 | 0.617 0.336 | 0.680 0.410 | 0.614 0.374 | 0.396
720 0.454  0.305 0.463 0330 | 0.480 0.341 | 0.545 0.413 | 0.656 0.347 | 0.671 0.403 | 0.633
96 0.206  0.257 0.215  0.268 | 0.210  0.258 | 0.210 0.295 | 0.191 0.270 | 0.679 0.604 | 0.351 0.446 | 0.168
k| 192 0.229  0.271 0.213  0.274 | 0.231  0.271 | 0.228 0.314 | 0.214 0.288 | 0.981 0.760 | 0.341 0.432 | 0.184
] 336 0.242  0.281 0.240  0.287 | 0.247 0.277 | 0.238 0.318 | 0.216 0.285 | 0.842 0.690 | 0.300 0.380 | 0.192
720 0.250  0.285 0.232  0.289 | 0.258 0.293 | 0.234 0.314 | 0.244 0.303 | 0.888 0.716 | 0.328 0.400 | 0.204

Wins 3(23) 35(6) 2(0) 9(11) 0(0) 0(1) 0(0) 0(0) 14 (20)
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Table 9: Full Ablation analysis results of SVTIME (-t). Lower MSE and MAE are better.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic
Method Length | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
SVTime 96 | 0361 0387 | 0.283 0329 | 0305 0.341 [ 0.182 0.253 | 0.169 0.223 | 0.127 0.221 | 0353 0.231

192 0.409 0.408 | 0.348 0.374 | 0.320 0.351 | 0.243 0.304 | 0.214 0.262 | 0.143 0.234 | 0.364 0.243
336 0.445 0.428 | 0.364 0.395 | 0.353 0.378 | 0.294 0.341 | 0.257 0.293 | 0.158 0.248 | 0.375 0.248
720 0.457 0.461 | 0.408 0.446 | 0.407 0.405 | 0.339 0.387 | 0.321 0.340 | 0.198 0.283 | 0.421 0.271
Avg. 0.418 0.421 | 0.351 0.386 | 0.346 0.369 | 0.265 0.321 | 0.240 0.280 | 0.157 0.247 | 0.378 0.248

(a) - IB2 96 0.371 0.394 | 0.274 0.338 | 0.301 0.346 | 0.164 0.254 | 0.17 0.221 | 0.136  0.231 | 0.414 0.301
192 0.405 0.416 | 0.335 0.378 | 0.339 0.368 | 0.22 0.291 | 0.214 0.26 | 0.151 0.244 | 0.489 0.336
336 0.437 0.436 | 0.367 0.406 | 0.372 0.387 | 0.273 033 | 0.26 0.294 | 0.166 0.26 | 0.513 0.368
720 0.467 0.468 | 0.391 0432 | 0.43 0.419 | 0.357 0.382 | 0.326 0.341 | 0.205 0.292 | 0.523 0.371
Avg. 0.420 0.429 | 0.342 0.389 | 0.361 0.380 | 0.254 0.314 | 0.243 0.279 | 0.165 0.257 | 0.485 0.344

(b) - Backcast 96 0.367 0.389 | 0.309 0.352 | 0.298 0.344 | 0.172 0.262 | 0.198 0.259 | 0.186 0.270 | 0.454 0.254
192 0.412 0.416 | 0.360 0.390 | 0.333 0.363 | 0.230 0.299 | 0.243 0.292 | 0.202 0.283 | 0.519 0.281
336 0.427 0.431 | 0.376 0.409 | 0.506 0.494 | 0.331 0.375 | 0.289 0.322 | 0.217 0.298 | 0.534 0.289
720 0.439 0.450 | 0.433 0.457 | 0.544 0.511 | 0.416 0.424 | 0.323 0.333 | 0.253 0.327 | 0.566 0.304
Avg. 0.411 0.421 | 0.369 0.402 | 0.420 0.428 | 0.287 0.340 | 0.263 0.301 | 0.214 0.295 | 0.518 0.282
SVTime-t 96 0.368 0.394 | 0.283 0.344 | 0.303 0.348 | 0.165 0.254 | 0.156 0.207 | 0.135 0.231 | 0.395 0.275
192 0.406 0.418 | 0.349 0.388 | 0.337 0.368 | 0.224 0.293 | 0.198 0.245 | 0.151 0.245 | 0.408 0.281
336 0.431 0.434 | 0.379 0.416 | 0.369 0.385 | 0.280 0.331 | 0.250 0.286 | 0.167 0.261 | 0.418 0.285
720 0.464 0472 | 0419 0.448 | 0.422 0.414 | 0.369 0.387 | 0.321 0.336 | 0.207 0.295 | 0.454 0.305
Avg. 0.417 0.430 | 0.357 0.399 | 0.358 0.379 | 0.259 0.316 | 0.231 0.269 | 0.165 0.258 | 0.419 0.286

(c) - IB2 96 0.385 0.405 | 0.301 0.369 | 0.318 0.352 | 0.218 0.289 | 0.249 0.286 | 0.143 0.237 | 0.404 0.275
192 0.405 0.410 | 0.352 0.395 | 0.340 0.364 | 0.258 0.316 | 0.270 0.300 | 0.155 0.247 | 0.414 0.278
336 0.432 0.426 | 0.382 0.425 | 0.368 0.381 | 0.301 0.344 | 0.301 0.320 | 0.170 0.263 | 0.423 0.283
720 0.468 0.472 | 0.431 0.456 | 0.420 0.412 | 0.380 0.394 | 0.350 0.354 | 0.210 0.296 | 0.459 0.302
Avg. 0.422 0428 | 0.366 0.411 | 0.361 0.377 | 0.289 0.336 | 0.293 0.315 | 0.170 0.261 | 0.425 0.284

(d)-1B3 96 0.385 0.415 | 0.303 0.367 | 0.318 0.353 | 0.218 0.290 | 0.170 0.222 | 0.143 0.237 | 0.404 0.274
192 0.424 0437 | 0.362 0.389 | 0.341 0.365 | 0.258 0.316 | 0.215 0.260 | 0.155 0.247 | 0.414 0.277
336 0.449 0.441 | 0.380 0.408 | 0.368 0.382 | 0.301 0.344 | 0.260 0.294 | 0.170 0.263 | 0.422 0.282
720 0.452 0.469 | 0.393 0.432 | 0421 0.412 | 0.380 0.393 | 0.326 0.342 | 0.209 0.296 | 0.458 0.299
Avg. 0.428 0.440 | 0.359 0.399 | 0.362 0.378 | 0.289 0.336 | 0.243 0.280 | 0.169 0.260 | 0.425 0.283

(e) - Backcast 96 0.435 0.463 | 0.335 0.377 | 0.545 0.434 | 0.248 0.314 | 0.25 0.29 | 0.18 0.265 | 0.564 0.371
192 0.471 0.482 | 0.37 0.398 | 0.553 0.441 | 0.282 0.335 | 0.273 0.304 | 0.199 0.282 | 0.623 0.386
336 0.513 0.543 | 0.375 0.407 | 0.568 0.451 | 0.321 0.359 | 0.303 0.324 | 0.215 0.296 | 0.634 0.389
720 0.532  0.552 | 0.404 0.433 | 0.593 0471 | 0.401 0.408 | 0.352 0.359 | 0.252 0.329 | 0.668 0.404
Avg. 0.488 0.510 | 0.371 0.404 | 0.565 0.449 | 0.313 0.354 | 0.295 0.319 | 0.212 0.293 | 0.622 0.387

Table 10: The comparison with Pretrained time series models. Red denotes performance superior to SVTIME.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic
Model MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
SVTIME | 0418 0421 | 0351 0386 | 0.346 0.369 | 0.265 0.321 | 0240 0.280 | 0.157 0.247 | 0.378 0.248
CALF (2024) 0432 0431 | 0.333  0.369 | 0368 0.385 | 0.355 0365 | 0.280 0.304 | 0.176  0.266 | 0.421 0.274
Improvement +3% +2% -5% -4% +6% +4% | +34% +14% | +17%  +9% | +12%  +8% | +11% +10%
GPT4TS (2023) | 0418 0421 | 0.336 0373 | 0.350 0.381 | 0.323 0350 | 0.251 0.288 | 0.170 0263 | 0.421 0.274
Improvement 0% +0% -4% -3% +1% +3% | +22%  +9% +5% +3% +8% +7% | +11% +10%

TimelLM (2024) | 0418 0432 | 0346 0.384 | 0.346 0.381 | 0.318 0.349 | 0.265 0.299 | 0.165 0.259 | 0.422 0.281
Improvement 0% +3% -1% -1% 0% +3% | +20% +9% | +10%  +7% +5% +5% | +11% +13%

VisionTS (2025) | 0.409 0.417 | 0.359 0.391 | 0.345 0373 | 0.269 0.328 | 0.224 0.257 | 0.161 0.253 | 0.387 0.255
Improvement -2% -1% +2% +1% 0% +1% +2% +2% -7% -8% +3% +2% +2% +3%

TimeVLM (2025) | 0.405 0.420 | 0.317 0.371 | 0.349 0.387 | 0.309 0.348 | 0.247 0.292 | 0.172 0.272 | 0.419 0.304
Improvement -3% 0% -10% -4% +1% +5% | +17%  +8% +3% +5% | +10% +10% | +11% +22%

LightGTS (2025) | 0.394 0.419 | 0.323 0.383 | 0.346 0.379 | 0.393 0.383 | 0.257 0.283 | 0.187 0.279 | 0.439  0.329
Improvement -6% -1% -8% -1% 0% +3% | +49% +19% | +7% +1% | +19% +13% | +16% +32%
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