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Abstract
Time series analysis has witnessed the inspiring de-
velopment from traditional autoregressive models,
deep learning models, to recent Transformers and
Large Language Models (LLMs). Efforts in lever-
aging vision models for time series analysis have
also been made along the way but are less visi-
ble to the community due to the predominant re-
search on sequence modeling in this domain. How-
ever, the discrepancy between continuous time se-
ries and the discrete token space of LLMs, and the
challenges in explicitly modeling the correlations
of variates in multivariate time series have shifted
some research attentions to the equally successful
Large Vision Models (LVMs) and Vision Language
Models (VLMs). To fill the blank in the existing
literature, this survey discusses the advantages of
vision models over LLMs in time series analysis.
It provides a comprehensive and in-depth overview
of the existing methods, with dual views of detailed
taxonomy that answer the key research questions
including how to encode time series as images and
how to model the imaged time series for various
tasks. Additionally, we address the challenges in
the pre- and post-processing steps involved in this
framework and outline future directions to further
advance time series analysis with vision models.

1 Introduction
Vision models have historically been used for time series
analysis. Since 1-dimensional (1D) convolutional neural net-
works (CNNs), such as WaveNet [Van Den Oord et al., 2016],
were found effective in sequence modeling [Bai et al., 2018],
they have been extensively adapted to various time series
tasks [Koprinska et al., 2018; Zhang et al., 2020]. Recently,
with the significant advances of sequence modeling in the
language domain, growing research attentions on time se-
ries have been drawn to methods ranging from Transformers
[Wen et al., 2023] to Large Language Models (LLMs) [Zhang
et al., 2024]. Meanwhile, the demands for universal modeling
have spurred on an explosion of works on time series foun-
dation models, such as TimesFM [Das et al., 2024], Chronos
[Ansari et al., 2024] and Time-MoE [Shi et al., 2024].

Time Series Pre-Processing
Time series normalization, extreme value filtering (§5)

Time Series to Image Transformation

Image Pre-Processing
Image channel and size alignment (§5)

Imaged Time Series Modeling

Post-Processing
Time series recovery from predicted images (§5)

Heatmap (§3.2)Line Plot (§3.1) Spectrogram (§3.3) 
GAF (§3.4) RP (§3.5) Other methods (§3.6)

Conventional vision models (§4.1) LVMs (§4.2)

LMMs/VLMs (§4.3) Task-specific heads (§4.4)

Figure 1: The general process of leveraging vision models for time
series analysis. The red boxes are two views of taxonomy used in
this survey. The dashed boxes denote optional, task-dependent steps.

As Large Vision Models (LVMs), such as ViT [Dosovit-
skiy et al., 2021], BEiT [Bao et al., 2022] and MAE [He et
al., 2022], become achieving a similar success as LLMs (but
in vision domain), a great deal of emergent efforts has been
invested to explore the potential of LVMs in time series mod-
eling [Chen et al., 2024]. This is inspired by the plenty of
ways for visualizing time series as images such as line plots
of univariate time series (UTS) and heatmaps of multivariate
time series (MTS). Such images provide a more straightfor-
ward view of time series than the counterpart textual repre-
sentations to humans and, presumably, AI bots.

Taking a closer inspection reveals more advantages favor-
ing LVMs over LLMs: (1) There is an inherent relationship
between images and time series – each row/column in an im-
age (per channel) is a sequence of continuous pixel values. By
pre-training on massive images, LVMs may have learned im-
portant sequential patterns such as trends, periods, and spikes
[Chen et al., 2024]. In contrast, LLMs are pre-trained on dis-
crete tokens, thus are less aligned with continuous time se-
ries. In fact, LLMs’ effectiveness on time series modeling is
in question [Tan et al., 2024]; (2) Instead of using channel-
independence assumption [Nie et al., 2023] to individually
model each variate in an MTS, some imaging methods (§3.7)
can naturally represent MTS, enabling explicit correlation en-
coding; (3) When prompting LLMs, existing methods often
struggle with properly verbalizing a long sequence (or a ma-
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trix) of floating numbers in a UTS (or MTS), which may be
limited by the context length or induce high API costs. In
contrast, existing works find that using LVMs on imaged time
series is more prompt-friendly and less API-costly [Daswani
et al., 2024]; (4) Some imaging methods can encode long
time series in a compact manner [Naiman et al., 2024], thus
have a great potential in modeling long-term dependency.

Also, the concurrent developments of LLMs and LVMs
for time series pave the way for a confluence, i.e., lever-
aging Large Multimodal Models (LMMs), such as LLaVA
[Liu et al., 2023], Gemini [Team, 2023] and Claude-3 [An-
thropic, 2024], to consolidate the two complementary modal-
ities, which may revolutionize the way (e.g., visually, linguis-
tically, etc.) that users interact with time series.

Despite the significance, a thorough review of relevant
works is absent in the existing literature to the best of our
knowledge. The survey [Zhang et al., 2024] discusses a few
vision models, but its focus is LLMs for time series. In light
of this, in this survey, we comprehensively investigate the tra-
ditional and the state-of-the-art (SOTA) methods. Fig. 1 iden-
tifies the general process of applying vision models for time
series analysis, which also serves as the structure of this sur-
vey. Our taxonomy has a dual view: (1) in Time Series to Im-
age Transformation (§3), we review 5 primary imaging meth-
ods including Line Plot, Heatmap, Spectrogram, Gramian
Angular Field (GAF), Recurrence Plot (RP), and some other
methods; (2) in Imaged Time Series Modeling (§4), we dis-
cuss conventional vision models, LVMs and the initial efforts
in LMMs. To highlight the taxonomy, we defer the discus-
sion on the desiderata of pre- and post-processing to the end
of this survey (§5). For comparison, we provide Table 1 to
summarize the existing methods. Finally, we discuss future
directions in this promising field (§6). A Github repository1

is also maintained to provide up-to-date resources including
our code of the imaging methods in §3. We hope this survey
could be an orthogonal complement to the existing surveys on
Transformer [Wen et al., 2023], LLMs [Zhang et al., 2024;
Jiang et al., 2024] and foundation models [Liang et al., 2024]
for time series, and provide a complete view on the process
of using vision models for time series analysis, so as to be an
insightful guidebook to the developers in this area.

2 Preliminaries and Taxonomy
In this paper, a UTS is represented by x = [x1, ..., xT ] ∈
R1×T where T is the length of the UTS, xt (1 ≤ t ≤ T ) is the
value at time step t. Suppose there are d variates (or features),
let xi ∈ R1×T (1 ≤ i ≤ d) be a UTS of the i-th variate, an
MTS can be represented by X = [x⊤

1 , ...,x
⊤
d ]

⊤ ∈ Rd×T .
As illustrated in Fig. 1, this survey focuses on methods

that transform time series to images, namely imaged time se-
ries, and then apply vision models on the imaged time series
for tackling time series tasks, such as classification, forecast-
ing and anomaly detection. It is noteworthy that methods on
videos or sequential images (a.k.a. image time series [Tara-
siou et al., 2023]) do not belong to this category because they
don’t transform time series to images. Similarly, methods for
spaciotemporal traffic data are out of our scope if the meth-

1https://github.com/D2I-Group/awesome-vision-time-series

ods focus on streams of images (e.g., traffic flows in a stream
of grid maps [Zhang et al., 2017]), but methods on imaging
time-space matrices [Ma et al., 2017] that resemble MTSs are
included. For vision models on audios, this survey only dis-
cusses some representative works in §3.3 due to space limit.
The focus of the survey will remain on general time series.

2.1 Taxonomy
We propose a taxonomy from the two views of Time Series to
Image Transformation (§3) and Imaged Time Series Modeling
(§4) as illustrated in Fig. 1. For the former, we discuss 5 pri-
mary methods for imaging UTS or MTS, and remark on their
pros and cons. For the latter, we classify the existing methods
by conventional vision models, LVMs and LMMs. We dis-
cuss their strategies on pre-training, fine-tuning, prompting,
and the deigns of task-specific heads. We also discuss the
challenges and solutions in pre-/post-processing in §5. Table
1 presents a summary. In the following two sections, we will
delve into the existing methods from the two views.

3 Time Series To Image Transformation
This section summarizes the methods for imaging time series
(§3.1-§3.6) and their extensions to encode MTSs (§3.7).

3.1 Line Plot
Line Plot is a straightforward way for visualizing UTSs for
human analysis (e.g., stocks, power consumption, etc.). As
illustrated by Fig. 2(a), the simplest approach is to draw a 2D
image with x-axis representing time steps and y-axis repre-
senting time-wise values, with a line connecting all values of
the series over time. This image can be either three-channel
(i.e., RGB) or single-channel as the colors may not be infor-
mative [Cohen et al., 2020; Sood et al., 2021; Jin et al., 2023;
Zhang et al., 2023]. ForCNN [Semenoglou et al., 2023] even
uses a single 8-bit integer to represent each pixel for black-
white images. So far, there is no consensus on whether other
graphical components, such as legend, grids and tick labels,
could provide extra benefits in any task. For example, ViTST
[Li et al., 2023b] finds these components are superfluous in a
classification task, while TAMA [Zhuang et al., 2024] finds
grid-like auxiliary lines help enhance anomaly detection.

In addition to the regular Line Plot, MV-DTSA [Yang et
al., 2023] and ViTime [Yang et al., 2024] divide an image
into h× L grids, and define a function to map each time step
of a UTS to a grid, producing a grid-like Line Plot. Also, we
include methods that use Scatter Plot [Daswani et al., 2024;
Prithyani et al., 2024] in this category because a Scatter Plot
resembles a Line Plot but doesn’t connect data points with a
line. By comparing them, [Prithyani et al., 2024] finds a Line
Plot could induce better time series classification.

For MTSs, we defer the discussion on Line Plot to §3.7.

3.2 Heatmap
As shown in Fig. 2(b), Heatmap is a 2D visualization of
the magnitude of the values in a matrix using color. It has
been used to represent the matrix of an MTS, i.e., X ∈
Rd×T , as a one-channel d × T image [Li et al., 2022;
Yazdanbakhsh and Dick, 2019]. Similarly, TimEHR [Karami
et al., 2024] represents an irregular MTS, where the intervals

https://github.com/D2I-Group/awesome-vision-time-series


(a) Line Plot (b) Heatmap (c) Spectrogram - STFT (d) Spectrogram - Wavelet (e) GAF (f) RP

Figure 2: An illustration of different methods for imaging time series with a sample (length=336) from the Electricity benchmark dataset [Nie
et al., 2023]. (a)(c)(d)(e)(f) visualize the same variate. (b) visualizes all 321 variates. Filterbank is omitted due to its similarity to STFT.

between time steps are uneven, as a d × H Heatmap image
by grouping the uneven time steps into H even time bins. In
[Zeng et al., 2021], a different method is used for visualiz-
ing a 9-variate financial MTS. It reshapes the 9 variates at
each time step to a 3 × 3 Heatmap image, and uses the se-
quence of images to forecast future frames, achieving time
series forecasting. In contrast, VisionTS [Chen et al., 2024]
uses Heatmap to visualize UTSs. Similar to TimesNet [Wu
et al., 2023], it first segments a length-T UTS into ⌊T/P ⌋
length-P subsequences, where P is a parameter representing
a periodicity of the UTS. Then the subsequences are stacked
into a P ×⌊T/P ⌋ matrix, with 3 duplicated channels, to pro-
duce a grayscale image input to an LVM. To encode MTSs,
VisionTS adopts the channel independence assumption [Nie
et al., 2023] and individually models each variate in an MTS.

Remark. Heatmap can be used to visualize matrices of vari-
ous forms. It is also used for matrices generated by the subse-
quent methods (e.g., Spectrogram, GAF, RP) in this section.
In this paper, the name Heatmap refers specifically to images
that use color to visualize the (normalized) values in UTS x
or MTS X without performing other transformations.

3.3 Spectrogram
A spectrogram is a visual representation of the spectrum of
frequencies of a signal as it varies with time, which are exten-
sively used for analyzing audio signals [Gong et al., 2021].
Since audio signals are a type of UTS, spectrogram can be
considered as a method for imaging a UTS. As shown in Fig.
2(c), a common format is a 2D heatmap image with x-axis
representing time steps and y-axis representing frequency,
a.k.a. a time-frequency space. Each pixel in the image repre-
sents the (logarithmic) amplitude of a specific frequency at a
specific time point. Typical methods for producing a spectro-
gram include Short-Time Fourier Transform (STFT) [Grif-
fin and Lim, 1984], Wavelet Transform [Daubechies, 1990],
and Filterbank [Vetterli and Herley, 1992].

STFT. Discrete Fourier transform (DFT) can be used to de-
scribe the intensity f(w) of each constituent frequency w of
a UTS signal x ∈ R1×T . However, f(w) has no time depen-
dency. It cannot provide dynamic information such as when
a specific frequency appear in the UTS. STFT addresses this
deficiency by sliding a window function g(t) over the time
steps in x, and computing the DFT within each window by

f(w, τ) =

T∑
t=1

xtg(t− τ)e−iwt (1)

wherew is frequency, τ is the position of the window, f(w, τ)
describes the intensity of frequency w at time step τ .

By selecting a proper window function g(·) (e.g., Gaus-
sian/Hamming/Bartlett window), a 2D spectrogram (e.g., Fig.
2(c)) can be drawn via a heatmap on the squared values
|f(w, τ)|2, with w as the y-axis, and τ as the x-axis. For
example, [Dixit et al., 2024] uses STFT based spectrogram
as an input to LMMs for time series classification.

Wavelet Transform. Continuous Wavelet Transform (CWT)
uses the inner product to measure the similarity between a
signal function x(t) and an analyzing function. The analyzing
function is a wavelet ψ(t), where the typical choices include
Morse wavelet, Morlet wavelet, etc. CWT compares x(t) to
the shifted and scaled (i.e., stretched or shrunk) versions of
the wavelet, and output a CWT coefficient by

c(s, τ) =

∫ ∞

−∞
x(t)

1

s
ψ∗(

t− τ

s
)dt (2)

where ∗ denotes complex conjugate, τ is the time step to shift,
and s represents the scale. In practice, a discretized version
of CWT in Eq. (2) is implemented for UTS [x1, ..., xT ].

It is noteworthy that the scale s controls the frequency en-
coded in a wavelet – a larger s leads to a stretched wavelet
with a lower frequency, and vice versa. As such, by varying
s and τ , a 2D spectrogram (e.g., Fig. 2(d)) can be drawn on
|c(s, τ)|, where s is the y-axis and τ is the x-axis. Compared
to STFT, which uses a fixed window size, Wavelet Transform
allows variable wavelet sizes – a larger size for more precise
low frequency information. Thus, the methods in [Du et al.,
2020; Namura et al., 2024; Zeng et al., 2023] choose CWT
(with Morlet wavelet) to generate the spectrogram.

Filterbank. This method resembles STFT and is often used
in processing audio signals. Given an audio signal, it firstly
goes through a pre-emphasis filter to boost high frequencies,
which helps improve the clarity of the signal. Then, STFT
is applied on the signal. Finally, multiple “triangle-shaped”
filters spaced on a Mel-scale are applied to the STFT power
spectrum |f(w, τ)|2 to extract frequency bands. The outcome
filterbank features f̂(w, τ) can be used to yield a spectrogram
with w as the y-axis, and τ as the x-axis.

Filterbank was adopted in AST [Gong et al., 2021] with
a 25ms Hamming window that shifts every 10ms for classi-
fying audio signals using Vision Transformer (ViT). It then
becomes widely used in the follow-up works such as SSAST
[Gong et al., 2022], MAE-AST [Baade et al., 2022], and
AST-SED [Li et al., 2023a], as summarized in Table 1.

3.4 Gramian Angular Field (GAF)
GAF was introduced for classifying UTSs using CNNs by
[Wang and Oates, 2015a]. It was then extended to an impu-



Method TS-Type Imaging Imaged Time Series Modeling TS-Recover Task Domain Code
Multi-modal Model Pre-trained Fine-tune Prompt

[Silva et al., 2013] UTS RP ✗ K-NN ✗ ✗ ✗ ✗ Classification General ✗

[Wang and Oates, 2015a] UTS GAF ✗ CNN ✗ ✓♭ ✗ ✓ Classification General ✗

[Wang and Oates, 2015b] UTS GAF ✗ CNN ✗ ✓♭ ✗ ✓ Multiple General ✗

[Ma et al., 2017] MTS Heatmap ✗ CNN ✗ ✓♭ ✗ ✓ Forecasting Traffic ✗

[Hatami et al., 2018] UTS RP ✗ CNN ✗ ✓♭ ✗ ✗ Classification General ✗

[Yazdanbakhsh and Dick, 2019] MTS Heatmap ✗ CNN ✗ ✓♭ ✗ ✗ Classification General ✓[1]

MSCRED [Zhang et al., 2019] MTS Other (§3.6) ✗ ConvLSTM ✗ ✓♭ ✗ ✗ Anomaly General ✓[2]

[Li et al., 2020] UTS RP ✗ CNN ✓ ✓ ✗ ✗ Forecasting General ✓[3]

[Cohen et al., 2020] UTS LinePlot ✗ Ensemble ✗ ✓♭ ✗ ✗ Classification Finance ✗

[Barra et al., 2020] UTS GAF ✗ CNN ✗ ✓♭ ✗ ✗ Classification Finance ✗

VisualAE [Sood et al., 2021] UTS LinePlot ✗ CNN ✗ ✓♭ ✗ ✓ Forecasting Finance ✗

[Zeng et al., 2021] MTS Heatmap ✗ CNN,LSTM ✗ ✓♭ ✗ ✓ Forecasting Finance ✗

AST [Gong et al., 2021] UTS Spectrogram ✗ DeiT ✓ ✓ ✗ ✗ Classification Audio ✓[4]

TTS-GAN [Li et al., 2022] MTS Heatmap ✗ ViT ✗ ✓♭ ✗ ✓ Ts-Generation Health ✓[5]

SSAST [Gong et al., 2022] UTS Spectrogram ✗ ViT ✓♮ ✓ ✗ ✗ Classification Audio ✓[6]

MAE-AST [Baade et al., 2022] UTS Spectrogram ✗ MAE ✓♮ ✓ ✗ ✗ Classification Audio ✓[7]

AST-SED [Li et al., 2023a] UTS Spectrogram ✗ SSAST,GRU ✓ ✓ ✗ ✗ EventDetection Audio ✗
[Jin et al., 2023] UTS LinePlot ✗ CNN ✓ ✓ ✗ ✗ Classification Physics ✗

ForCNN [Semenoglou et al., 2023] UTS LinePlot ✗ CNN ✗ ✓♭ ✗ ✗ Forecasting General ✗

Vit-num-spec [Zeng et al., 2023] UTS Spectrogram ✗ ViT ✗ ✓♭ ✗ ✗ Forecasting Finance ✗

ViTST [Li et al., 2023b] MTS LinePlot ✗ Swin ✓ ✓ ✗ ✗ Classification General ✓[8]

MV-DTSA [Yang et al., 2023] UTS* LinePlot ✗ CNN ✗ ✓♭ ✗ ✓ Forecasting General ✓[9]

TimesNet [Wu et al., 2023] MTS Heatmap ✗ CNN ✗ ✓♭ ✗ ✓ Multiple General ✓[10]

ITF-TAD [Namura et al., 2024] UTS Spectrogram ✗ CNN ✓ ✗ ✗ ✗ Anomaly General ✗
[Kaewrakmuk et al., 2024] UTS GAF ✗ CNN ✓ ✓ ✗ ✗ Classification Sensing ✗

HCR-AdaAD [Lin et al., 2024] MTS RP ✗ CNN,GNN ✗ ✓♭ ✗ ✗ Anomaly General ✗

FIRTS [Costa et al., 2024] UTS Other (§3.6) ✗ CNN ✗ ✓♭ ✗ ✗ Classification General ✓[11]

CAFO [Kim et al., 2024] MTS RP ✗ CNN,ViT ✗ ✓♭ ✗ ✗ Explanation General ✓[12]

ViTime [Yang et al., 2024] UTS* LinePlot ✗ ViT ✓♮ ✓ ✗ ✓ Forecasting General ✓[13]

ImagenTime [Naiman et al., 2024] MTS Other (§3.6) ✗ CNN ✗ ✓♭ ✗ ✓ Ts-Generation General ✓[14]

TimEHR [Karami et al., 2024] MTS Heatmap ✗ CNN ✗ ✓♭ ✗ ✓ Ts-Generation Health ✓[15]

VisionTS [Chen et al., 2024] UTS* Heatmap ✗ MAE ✓ ✓ ✗ ✓ Forecasting General ✓[16]

InsightMiner [Zhang et al., 2023] UTS LinePlot ✓ LLaVA ✓ ✓ ✓ ✗ Txt-Generation General ✗
[Wimmer and Rekabsaz, 2023] MTS LinePlot ✓ CLIP,LSTM ✓ ✓ ✗ ✗ Classification Finance ✗

[Dixit et al., 2024] UTS Spectrogram ✓
GPT4o,Gemini

✓ ✗ ✓ ✗ Classification Audio ✗& Claude3
[Daswani et al., 2024] MTS LinePlot ✓ GPT4o,Gemini ✓ ✗ ✓ ✗ Multiple General ✗
TAMA [Zhuang et al., 2024] UTS LinePlot ✓ GPT4o ✓ ✗ ✓ ✗ Anomaly General ✗
[Prithyani et al., 2024] MTS LinePlot ✓ LLaVA ✓ ✓ ✓ ✗ Classification General ✓[17]

Table 1: Taxonomy of vision models on time series. The top panel includes single-modal models. The bottom panel includes multi-modal
models. TS-Type denotes type of time series. TS-Recover denotes recovering time series from predicted images (§5). *: the method has
been used to model the individual UTSs of an MTS. ♮: a new pre-trained model was proposed in the work. ♭: when pre-trained models were
unused, “Fine-tune” refers to train a task-specific model from scratch. Model column: CNN could be regular CNN, ResNet, VGG-Net, etc.

tation task in [Wang and Oates, 2015b]. Similarly, [Barra et
al., 2020] applied GAF for financial time series forecasting.

Given a UTS x ∈ R1×T , the first step is to rescale each
xt to a value x̃t within [0, 1] (or [−1, 1]). This range enables
mapping x̃t to polar coordinates by ϕt = arccos(x̃i), with
a radius r = t/N encoding the time stamp, where N is a
constant factor to regularize the span of the polar coordinates.
Two types of GAF, Gramian Sum Angular Field (GASF) and
Gramian Difference Angular Field (GADF) are defined as

GASF: cos(ϕt + ϕt′) = xtxt′ −
√

1− x2t

√
1− x2t′

GADF: sin(ϕt − ϕt′) = xt′
√

1− x2t − xt

√
1− x2t′

(3)

which exploits the pairwise temporal correlations in the UTS.
Thus, the outcome is a T × T matrix G with Gt,t′ specified
by either type in Eq. (3). A GAF image is a heatmap on G
with both axes representing time, as illustrated by Fig. 2(e).

3.5 Recurrence Plot (RP)
RP [Eckmann et al., 1987] encodes a UTS into an image that
captures its periodic patterns by using its reconstructed phase

space. The phase space of x ∈ R1×T can be reconstructed by
time delay embedding – a set of new vectors v1, ..., vl with

vt = [xt, xt+τ , xt+2τ , ..., xt+(m−1)τ ] ∈ Rmτ , 1 ≤ t ≤ l (4)
where τ is the time delay, m is the dimension of the phase
space, both are hyperparameters. Hence, l = T − (m− 1)τ .
With vectors v1, ..., vl, an RP image measures their pairwise
distances, results in an l × l image whose element

RPi,j = Θ(ε− ∥vi − vj∥), 1 ≤ i, j ≤ l (5)
where Θ(·) is the Heaviside step function, ε is a threshold,
and ∥·∥ is a norm function such as ℓ2 norm. Eq. (5) generates
a binary matrix with RPi,j = 1 if vi and vj are sufficiently
similar, producing a black-white image (e.g., Fig. 2(f)).

An advantage of RP is its flexibility in image size by tuning
m and τ . Thus it has been used for time series classification
[Silva et al., 2013; Hatami et al., 2018], forecasting [Li et al.,
2020], anomaly detection [Lin et al., 2024] and explanation
[Kim et al., 2024]. Moreover, the method in [Hatami et al.,
2018], and similarly in HCR-AdaAD [Lin et al., 2024], omit
the thresholding in Eq. (5) and uses ∥vi − vj∥ to produce
continuously valued images to avoid information loss.

https://github.com/SonbolYb/multivariate_timeseries_dilated_conv
https://github.com/7fantasysz/MSCRED
https://github.com/lixixibj/forecasting-with-time-series-imaging
https://github.com/YuanGongND/ast
https://github.com/imics-lab/tts-gan
https://github.com/YuanGongND/ssast
https://github.com/AlanBaade/MAE-AST-Public
https://github.com/Leezekun/ViTST
https://github.com/IkeYang/machine-vision-assisted-deep-time-series-analysis-MV-DTSA-
https://github.com/thuml/TimesNet
https://sites.google.com/view/firts-paper
https://github.com/eai-lab/CAFO
https://github.com/IkeYang/ViTime
https://github.com/azencot-group/ImagenTime
https://github.com/esl-epfl/TimEHR
https://github.com/Keytoyze/VisionTS
https://github.com/vinayp17/VLM_TSC


Method TS-Type Advantages Limitations
Line Plot (§3.1) UTS, MTS matches human perception of time series limited to MTSs with a small number of variates
Heatmap (§3.2) UTS, MTS straightforward for both UTSs and MTSs the order of variates may affect their correlation learning
Spectrogram (§3.3) UTS encodes the time-frequency space limited to UTSs; needs a proper choice of window/wavelet
GAF (§3.4) UTS encodes the temporal correlations in a UTS limited to UTSs; O(T 2) time and space complexity
RP (§3.5) UTS flexibility in image size by tuning m and τ limited to UTSs; information loss after thresholding

Table 2: Summary of the five primary methods for transforming time series to images. TS-Type denotes type of time series.

3.6 Other Methods
Additionally, [Wang and Oates, 2015a] introduces Markov
Transition Field (MTF) for imaging a UTS. MTF is a matrix
M ∈ RQ×Q encoding the transition probabilities over time
segments, where Q is the number of segments. ImagenTime
[Naiman et al., 2024] stacks the delay embeddings v1, ..., vl

in Eq. (4) to an l × mτ matrix for visualizing UTSs. MS-
CRED [Zhang et al., 2019] uses heatmaps on the d × d cor-
relation matrices of MTSs with d variates for anomaly detec-
tion. Furthermore, some methods use a mixture of imaging
methods by stacking different transformations. [Wang and
Oates, 2015b] stacks GASF, GADF, MTF to a 3-channel im-
age. FIRTS [Costa et al., 2024] builds a 3-channel image by
stacking GASF, MTF and RP. The mixture methods encode
a UTS with multiple views and were found more robust than
single-view images in these works for classification tasks.

3.7 How to Model MTS
In the above methods, Heatmap (§3.2) can be used to visual-
ize the variate-time matrices, X, of MTSs (e.g., Fig. 1(b)),
where correlated variates should be spatially close to each
other. Line Plot (§3.1) can be used to visualize MTSs by plot-
ting all variates in the same image [Wimmer and Rekabsaz,
2023; Daswani et al., 2024] or combining all univariate im-
ages to compose a bigger image [Li et al., 2023b], but these
methods only work for a small number of variates. Spectro-
gram (§3.3), GAF (§3.4), and RP (§3.5) were designed specif-
ically for UTSs. For these methods and Line Plot, which
are not straightforward in imaging MTSs, the general ap-
proaches include using channel independence assumption to
model each variate individually [Nie et al., 2023], or stacking
the images of d variates to form a d-channel image [Naiman
et al., 2024; Kim et al., 2024]. However, the latter does not
fit some vision models pre-trained on RGB images which re-
quires 3-channel inputs (more discussions are deferred to §5).

Remark. As a summary, Table 2 recaps the salient advan-
tages and limitations of the five primary imaging methods that
are introduced in this section.

4 Imaged Time Series Modeling
With image representations, time series analysis can be read-
ily performed with vision models. This section discusses such
solutions from the traditional models to the SOTA models.

4.1 Conventional Vision Models
Following traditional image classification, [Silva et al., 2013]
applies a K-NN classifier on the RPs of time series, [Cohen
et al., 2020] applies an ensemble of fundamental classifiers
such as SVM and AdaBoost on the Line Plots for time series

classification. As an image encoder, CNNs have been widely
used for learning image representations. Different from us-
ing 1D CNNs on sequences [Bai et al., 2018], 2D or 3D
CNNs can be applied on imaged time series as shown in Fig.
3(a). For example, regular CNNs have been used on Spectro-
grams [Du et al., 2020], tiled CNNs have been used on GAF
images [Wang and Oates, 2015a; Wang and Oates, 2015b],
dilated CNNs have been used on Heatmap images [Yazdan-
bakhsh and Dick, 2019]. More frequently, ResNet [He et
al., 2016], Inception-v1 [Szegedy et al., 2015], and VGG-
Net [Simonyan and Zisserman, 2015] have been used on Line
Plots [Jin et al., 2023; Semenoglou et al., 2023], Heatmap
images [Zeng et al., 2021], RP images [Li et al., 2020;
Kim et al., 2024], GAF images [Barra et al., 2020; Kaewrak-
muk et al., 2024], and even a mixture of GAF, MTF and RP
images [Costa et al., 2024]. In particular, for time series gen-
eration tasks, GAN frameworks of CNNs [Li et al., 2022;
Karami et al., 2024] and a diffusion model with U-Nets
[Naiman et al., 2024] have also been explored.

Due to their small to medium sizes, these models are often
trained from scratch using task-specific training data. Mean-
while, fine-tuning pre-trained vision models have already
been found promising in cross-modality knowledge transfer
for time series anomaly detection [Namura et al., 2024], fore-
casting [Li et al., 2020] and classification [Jin et al., 2023].

4.2 Large Vision Models (LVMs)
Vision Transformer (ViT) [Dosovitskiy et al., 2021] has in-
spired the development of modern LVMs such as Swin [Liu
et al., 2021], BEiT [Bao et al., 2022], and MAE [He et al.,
2022]. As Fig. 3(b) shows, ViT splits an image into patches
of fixed size, then embeds each patch and augments it with
a positional embedding. The vectors of patches are pro-
cessed by a Transformer as if they were token embeddings.
Compared to CNNs, ViTs are less data-efficient, but have
higher capacity. Thus, pre-trained ViTs have been explored
for modeling imaged time series. For example, AST [Gong
et al., 2021] fine-tunes DeiT [Touvron et al., 2021] on the
filterbank spetrogram of audios for classification tasks and
finds ImageNet-pretrained DeiT is remarkably effective in
knowledge transfer. The fine-tuning paradigm has also been
adopted in [Zeng et al., 2023; Li et al., 2023b] but with differ-
ent pre-trained models such as Swin by [Li et al., 2023b]. Vi-
sionTS [Chen et al., 2024] attributes LVMs’ superiority over
LLMs in knowledge transfer to the small gap between the
pre-trained images and imaged time series. It finds that with
one-epoch fine-tuning, MAE becomes the SOTA time series
forecasters on some benchmark datasets.

Similar to time series foundation models such as TimesFM
[Das et al., 2024], there are some initial efforts in pre-training
ViT architectures with imaged time series. Following AST,
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SSAST [Gong et al., 2022] introduced a masked spectro-
gram patch prediction framework for pre-training ViT on a
large dataset – AudioSet-2M. Then it becomes a backbone of
some follow-up works such as AST-SED [Li et al., 2023a]
for sound event detection. For UTSs, ViTime [Yang et al.,
2024] generates a large set of Line Plots of synthetic UTSs for
pre-training ViT, which was found superior over TimesFM in
zero-shot forecasting tasks on benchmark datasets.

4.3 Large Multimodal Models (LMMs)
As LMMs get growing attentions, some notable LMMs, such
as LLaVA [Liu et al., 2023], Gemini [Team, 2023], GPT-4o
[Achiam et al., 2023] and Claude-3 [Anthropic, 2024], have
been explored to consolidate the power of LLMs and LVMs in
time series analysis. Since LMMs support multimodal input
via prompts, methods in this thread typically prompt LMMs
with the textual and imaged representations of time series,
and instructions on what tasks to perform (e.g., Fig. 3(c)).

InsightMiner [Zhang et al., 2023] is a pioneer work that
uses the LLaVA architecture to generate texts describing the
trend of each input UTS. It extracts the trend of a UTS by
Seasonal-Trend decomposition, encodes the Line Plot of the
trend, and concatenates the embedding of the Line Plot with
the embeddings of a textual instruction, which includes a se-
quence of numbers representing the UTS, e.g., “[1.1, 1.7, ...,
0.3]”. The concatenated embeddings are taken by a language
model for generating trend descriptions. Similarly, [Prithyani
et al., 2024] adopts the LLaVA architecture, but for MTS
classification. An MTS is encoded by the visual embeddings
of the stacked Line Plots of all variates. The matrix of the
MTS is also verbalized in a prompt as the textual modal-
ity. By integrating token embeddings, both methods fine-tune
some layers of the LMMs with some synthetic data.

Moreover, zero-shot and in-context learning performance
of several commercial LMMs have been evaluated for audio
classification [Dixit et al., 2024], anomaly detection [Zhuang
et al., 2024], and some synthetic tasks [Daswani et al., 2024],
where the image and textual representations of a query time
series are integrated into a prompt. For in-context learning,
these methods inject the images of a few example time series
and their labels (e.g., classes) into an instruction to prompt
LMMs for assisting the prediction of the query time series.

4.4 Task-Specific Heads
For classification tasks, most of the methods in Table 1 adopt
a fully connected (FC) layer or multilayer perceptron (MLP)
to transform an embedding into a probability distribution
over all classes. For forecasting tasks, there are two ap-
proaches: (1) using a de × W MLP/FC layer to directly

predict (from the de-dimensional embedding) the time series
values in a future time window of size W [Li et al., 2020;
Semenoglou et al., 2023]; (2) predicting the pixel values that
represent the future part of the time series and then recovering
the time series from the predicted image [Yang et al., 2023;
Chen et al., 2024; Yang et al., 2024] (§5 discusses the re-
covery methods). Imputation and generation tasks resemble
forecasting as they also predict time series values. Thus ap-
proach (2) has been used for imputation [Wang and Oates,
2015b] and generation [Naiman et al., 2024; Karami et al.,
2024]. When using LMMs for classification, text generation,
and anomaly detection, most of the methods prompt LMMs
to produce the desired outputs in textual answers, circumvent-
ing task-specific heads [Zhang et al., 2023; Dixit et al., 2024;
Zhuang et al., 2024].

5 Pre-Processing and Post-Processing
To be successful in using vision models, some subtle design
desiderata include time series normalization, image align-
ment and time series recovery.

Time Series Normalization. Vision models are usually
trained on standardized images. To be aligned, the images in-
troduced in §3 should be normalized with a controlled mean
and standard deviation, as did by [Gong et al., 2021] on spec-
trograms. In particular, as Heatmap is built on raw time se-
ries values, the commonly used Instance Normalization (IN)
[Kim et al., 2022] can be applied on the time series as sug-
gested by VisionTS [Chen et al., 2024] since IN share similar
merits as Standardization. Using Line Plot requires a proper
range of y-axis. In addition to rescaling time series [Zhuang
et al., 2024], ViTST [Li et al., 2023b] introduced several
methods to remove extreme values from the plot. GAF re-
quires min-max normalization on its input, as it transforms
time series values withtin [0, 1] to polar coordinates (i.e., arc-
cos). In contrast, input to RP is usually normalization-free as
an ℓ2 norm is involved in Eq. (5) before thresholding.

Image Alignment. When using pre-trained models, it is im-
perative to fit the image size to the input requirement of the
models. This is especially true for Transformer based models
as they use a fixed number of positional embeddings to en-
code the spacial information of image patches. For 3-channel
RGB images such as Line Plot, it is straightforward to meet a
pre-defined size by adjusting the resolution when producing
the image. For images built upon matrices such as Heatmap,
Spectrogram, GAF, RP, the number of channels and matrix
size need adjustment. For the channels, one method is to du-
plicate a matrix to 3 channels [Chen et al., 2024], another way



is to average the weights of the 3-channel patch embedding
layer into a 1-channel layer [Gong et al., 2021]. For the im-
age size, bilinear interpolation is a common method to resize
input images [Chen et al., 2024]. Alternatively, AST [Gong
et al., 2021] resizes the positional embeddings instead of the
images to fit the model to a desired input size. However, the
interpolation in these methods may either alter the time series
or the spacial information in positional embeddings.

Time Series Recovery. As stated in §4.4, tasks such as fore-
casting, imputation and generation requires predicting time
series values. For models that predict pixel values of images,
post-processing involves recovering time series from the pre-
dicted images. Recovery from Line Plots is tricky, it requires
locating pixels that represent time series and mapping them
back to the original values. This can be done by manipulat-
ing a grid-like Line Plot as introduced in [Yang et al., 2023;
Yang et al., 2024], which has a recovery function. In con-
trast, recovery from Heatmap is straightforward as it directly
stores the predicted time series values [Zeng et al., 2021;
Chen et al., 2024]. Spectrogram is underexplored in these
tasks and it remains open on how to recover time series from
it. The existing work [Zeng et al., 2023] uses Spectrogram for
forecasting only with an MLP head that directly predicts time
series. GAF supports accurate recovery by an inverse map-
ping from polar coordinates to normalized time series [Wang
and Oates, 2015b]. However, RP lost time series informa-
tion during thresholding (Eq. 5), thus may not fit recovery-
demanded tasks without using an ad-hoc prediction head.

6 Challenges and Future Directions
Fundamental Understanding. Given the multiple methods
for imaging time series, the existing works usually pick their
own choice by intuition. There remains a gap in both theoret-
ical and empirical understanding of research questions such
as which imaging methods fit what tasks and whether LVMs
truly learn patterns from the images that make them more
suitable than LLMs in time series modeling. Some exist-
ing works evaluate multiple imaging methods, but in limited
tasks. For example, ImagenTime [Naiman et al., 2024] com-
pares the representation abilities of GAF, STFT, and delay
embedding (§3.6) in a time series generation task. However,
a thorough understanding that can guide future developments
of LVMs and LMMs on top of different imaging methods is
absent. This survey provides an initial comparative discus-
sion of these methods in §3. Further investigations with em-
pirical validation and theoretical justification is essential to
the synergy between LVMs/LMMs and time series analysis.

Modeling the Correlation of Variates in MTS. In §3.7, we
discussed the existing methods for imaging MTSs. However,
each of them has its limitation. For example, when visual-
izing a variate-time matrix by a Heatmap image (e.g., Fig.
2(b)), the row a variate locates at matters to the downstream
modeling of correlations. This is because vision models only
encode the spatial relationships of pixels thus correlated vari-
ates should be spatially close to each other. Similarly, Line
Plots does not enable explicit modeling of correlated variates
by vision models. Stacking d images, one per variate, into

a d-channel input may disable the chance to use pre-trained
LVMs due to their fixed 3-channel RGB input. As such, effec-
tive methods at either the imaging step or the modeling step
(e.g., leveraging graph neural networks (GNNs) on variates)
that allow correlation learning from MTSs are in demand.

Advanced Imaging for Time Series. In addition to the ba-
sic methods introduced in §3, it is promising to explore more
advanced image representations. For example, InsightMiner
[Zhang et al., 2023] adopts Seasonal-Trend decomposition,
which is often used to extract components that can serve as in-
ductive bias for time series models. Generalizing it to decom-
pose images such as Spectrogram, GAF, RP into fine-grained
representations may further boost vision models’ ability in
time series analysis. Moreover, mixture of imaging may en-
able encoding of information from different views, such as
frequency (Spectrogram), temporal relationships (GAF) and
recurrence patterns (RP). FIRTS [Costa et al., 2024] stacks
a mixture of images in multiple channels for a classification
task, but it is limited to images of the same size. Modeling
a mixture of arbitrary images by methods such as multi-view
learning may enable more flexibility.

Multimodal Time Series Models and Agents. As can be
seen from Table 1, the existing research on multimodal anal-
ysis (with vision modality) is much less than unimodal analy-
sis, with a limited scope of time series tasks. Given the exist-
ing LLMs for time series such as Time-LLM [Jin et al., 2024]
and S2IP [Pan et al., 2024], it is appealing to introduce vision
modality to further boost the performance in wide tasks such
as forecasting, classification and anomaly detection. Further-
more, the visual representation of time series provides the
foundation for exploring multimodal AI agents [Xie et al.,
2024] for more intricate and nuanced tasks that requires rea-
soning and interactions with environments, such as root cause
analysis in AI for IT Operations (AIOps).

Vision-based Time Series Foundation Models. A founda-
tion model (FM) is a deep learning model trained on vast
datasets that is applicable to a wide range of tasks. Recent
time series FMs, such as TimesFM [Das et al., 2024], MO-
MENT [Goswami et al., 2024], Chronos [Ansari et al., 2024]
and Time-MoE [Shi et al., 2024], are mostly built upon LLM
architectures and trained on raw time series. Given the po-
tential of image representation, it is promising to explore vi-
sion models as a new architecture to revolutionize time series
FMs. This research direction not only leverages the advan-
tages of LVMs as introduced in §1 (e.g., the prior knowledge
extracted from the vast pre-training images), but also enables
future development of vision-language FMs for time series.

7 Conclusion
In this paper, we present the first survey on leveraging vision
models for time series analysis, whose general process struc-
tures the survey. We propose a new taxonomy consisting of
imaging and modeling methods for time series. We discuss
the pre- and post-processing steps as well. Each category en-
compasses representative methods and relevant remarks. The
survey also highlights the challenges and future directions for
further advancing time series analysis with vision models.
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